
Economic and environmental performances of solar LED lanterns under the Clean Development Mechanism: The case of Cambodia

2014 IEPPEC Conference

FACULTEIT BEDRIJFSECONOMISCHE WETENSCHAPPEN

Overview

Introduction: Clean Development Mechanism

- Market mechanism of the Kyoto protocol
 - Enables developed countries to implement sustainable projects in developing countries in turn for CER credits
- Two objectives:

CONTRADICTORY?

Introduction: Cl

Table 1 Trend of CERs issue

velopment Mechanism

ording to project type as a percentage

of the total amount of CER /eu/ issuing

- 111

Year	Hydro	Wind	Solar	Biomass	HFC	N ₂ O	Methane	Other
2006	5.92%	3.49%	0.00%	13.75%	59.94%	7.80%	6.31%	2.79%
2007	2.51%	2.47%	0.00%	6.09%	46.27%	25.61%	5.15%	11.89
								%
2008	3.53%	4.35%	0.00%	2.56%	56.43%	22.18%	7.39%	3.55%
2009	5.25%	5.98%	0.00%	2.65%	57.97%	19.25%	3.93%	4.97%
2010	8.63%	8.18%	0.00%	1.28%	36.07%	31.44%	4.80%	9.61%
2011	12.15%	8.78%	0.04%	1.40%	38.78%	20.93%	7.11%	11.16
								%
2012	16.36%	12.98%	0.03%	2.59%	30.06%	15.31%	9.54%	13.12
								%
2013	20.30%	16.49%	0.36%	4.53%	14.83%	12.43%	15.73%	15.77
								%
Average	9.33%	7.84%	0.05%	4.36%	42.54%	19.37%	7.50%	9.11%

96%:

on-grid

Introduction: TedX Camille van Gestel (Waka Waka)

If, starting from now on, you had two hours per day less in your life, what would you do?

- Finish work?
- Spend time with family?
- Hobbies?

Introduction: TedX Camille van Gestel (Waka Waka)

Implementation of solar LED lanterns (rather than kerosene lanterns):

- GHG emission reduction
- More lighting hours \rightarrow increased (home)work performances
- Less injuries
- Less health problems
- Increased safety conditions

Methodology: Mitigation cost

$Mitigation \ cost = \frac{Economic \ costs \ (\$)}{Avoided \ GHG \ emissions \ (ton \ CO_2)} \ \uparrow \uparrow$

Methodology: Absolute mitigation cost

"Absolute" mitigation cost (UNFCCC)

t=1 $A_{i,t}$

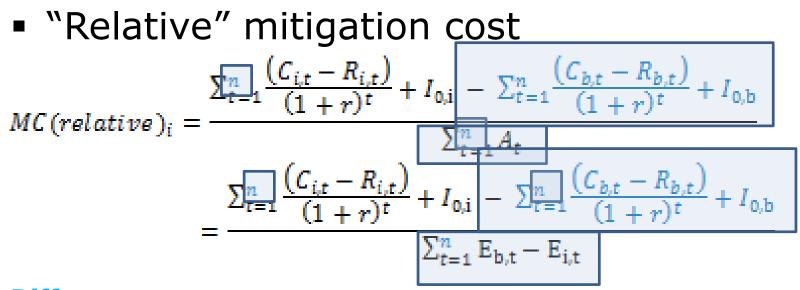
MC(absolute)_i: absolute mitigation cost of project i

cp: crediting period

 $MC(absolute)_i =$

- C: operating cost
- *R*: non-CER revenue
- I : initial investment
- A :expected emission reduction; difference between the baseline emissions (E_b) and the project emissions (E_i) (according to CDM methodology)

(I_{0,i}


 $E_{b,t} = E_{b,t} - E_{i,t}$

univers

KNOWLEDGE

r : discount rate

Methodology: Relative mitigation cost

Differences:

- cp: crediting period → n: operational lifetime
- Baseline costs are deducted from project costs
- A :expected emission reduction; difference between the baseline emissions (E_b) and the project emissions (E_i) (according to LCA model)

Case: Portable solar LED lanterns

Cambodia (electrification rate 24%)

- Functional unit:
 - ✓ 100,000 households
 - ✓ 3.5 hours per day
 - ✓ 90 lumens
 - ✓ 365 days per year
 - ✓ period of 10 year
 - \rightarrow 114,975 million lumen

hours over a 10 year time span

Case: Portable solar LED lanterns

	Portable solar LED lantern	Kerosene lantern
I ₀	\$15 + \$5 per battery	\$0.70
n	Lamp: 10y Battery: 2y	2γ
С	\$5 battery replacement	\$0.74/l; 0.03l/h \$0.125 per wick
ср	7у	2у
Light output	30lm	45lm
Light output over lifetime	383,250lmh	114,975lmh
Number of systems in FU	300,000	1,000,000

Nowledge IN ACTION

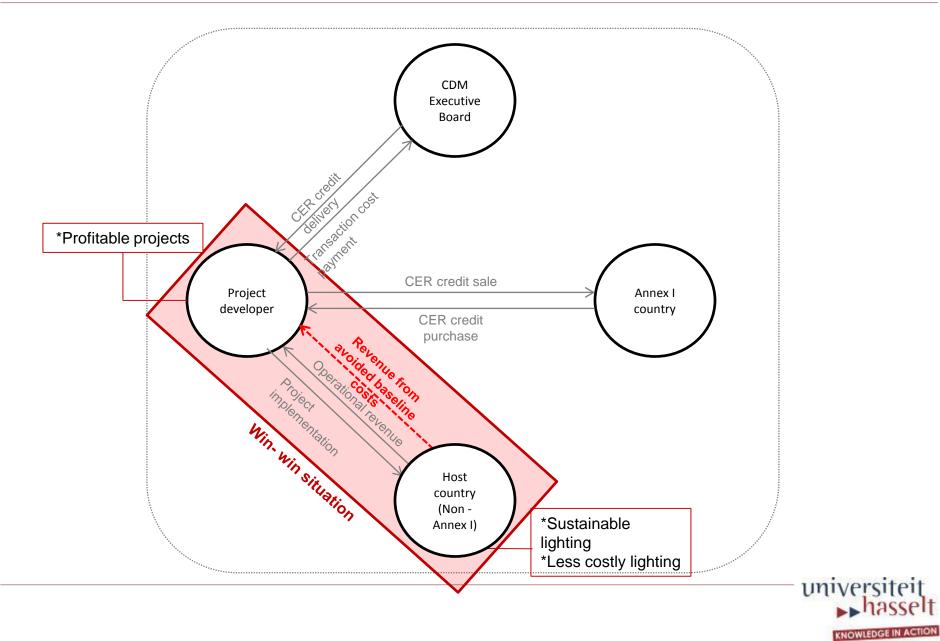
Case: Results

	Absolute	Absolute	Relative	Relative
	(cp = 7y) <	<mark>>(cp = 10y)</mark>	<mark>(cp = 10y</mark>	(cp =7y)
Project costs (\$):	8,206,262	9,260,142	9,260,142	8,206,262
Baseline costs (\$):	n.a.	n.a.	46,995,637	34,830,275
Additional project costs (\$)	8,206,262	9,260,142	-37,735,495	-26,624,013
Project emissions (t CO ₂ eq)	0	0	1,602	1,518
Baseline emissions (t CO ₂ eq)	193,158	275,940	283,605	198,524
Emission reductions: (t CO ₂ eq)	193,158	275,940	282,003	197,006
<u>GHG mitigation cost (\$/t CO₂ eq)</u>	<u>42.48</u>	33.56	<u>-133.81</u>	<u>-135,14</u>
· · · · · · · · · · · · · · · · · · ·				

• Inclusion of baseline costs \rightarrow major difference

• Use of crediting period (7y) versus operational lifetime (10y) \rightarrow small difference

Use of LCA methodology versus estimate of CDM → negligible difference



Policy recommendations

- 1)Use operational lifetime (rather than limited crediting period) to calculate emissions
 → Stimulate technological development
- 2)Continue using approximated baseline emissions, also for other cases (e.g. solar home systems)
 → Simplify procedures for project implementers
- 3) Create guidelines to provide revenue stream for investors from avoided baseline costs
 - \rightarrow Enhance profitability/attractiveness for project implementers

Policy recommendations

Conclusions

- Relative rather than absolute mitigation costs to assess attractiveness of CDM projects
- Large influence on small-scale rural energy technologies
- "Lighting as a service" model
- → CDM twin objectives more likely to be reconcilable rather than opposed

univers

Thank you for your attention!

Questions? Feedback? Suggestions?

ellen.deschepper@uhasselt.be

