

CLIMATE ACTION TRACKER

Climate Policy Tracking: Evaluating Policy and Portfolio Level Impacts Real-Time

IEPEC 2014 Hanna Fekete, 9 September 2014

Presentation and paper based on: Hanna F., M. Vieweg, M. Rocha, N. Braun, M. Lindberg, J. Gütschow, L. Jeffery, N. Höhne, B. Hare, M. Schaeffer, K. Macey, J. Larkin. (2013). *Analysis of current greenhouse gas emission trends*.

Outline

- Background and motivation for the analysis
- Approach to quantifying emissions levels including policies
 - Method
 - Examplary country results
- Challenges of the approach and solutions
- Conclusions

Background and motivation

The Climate Action Tracker project:

 Quantification and evaluation of emission reduction pledges under the UN Framework Convention on Climate Change

- Current policy projections to tell:
 - Are countries on track for reaching their pledges?
 - Are global emissions are on track to limit temperature increase to max. 2° C above pre-industrial levels?

Conditions and resulting approach

General principles

- Comparability of results
- Transparency and robustness
- Compatibility of data within projects
- Simplicity

Overall approach:

Inputs

- Data on emissions, energy and activity level (projections and historic data)
- Breakdown of data by sector/sub-sector or gas
- Information on assumptions, scope and currentness of data
- Up to date information on current policies and their effectiveness

Zoom in on own calculations

General:

Simple Excel modules which can be combined and easily adapted to national circumstances or data availability

Example: electricity generation or capacity target for RE:

- Step1: Calculate share of total electricity generation
- Step2: Determine share of other energy carriers under target scenario, e.g. based on an external scenario or own assumptions
- Step3: Apply emission factors for energy carriers

Exemplary country results – South Korea

- Result: 613 627 MtCO2e/a in 2020 (excl. land use, land use change and forestry)
- Input data from UNFCCC (historic data), national communication (projections)
- Add. policies included: Policies under the Green Growth Strategy (e.g. Target Management System, Renewable Portfolio Standard, million green homes)

Challenges to the analysis and solutions

Challenge	Approaches
 Lack of data Lack of data especially for developing countries Depth of information available by country varies greatly 	 Scaling down data/information to countries/sectors Extra/-interpolation to/between years Take own assumptions on future development of indicators
 Conflicting data Historic data and future projections do not match Various contradicting projections 	 Harmonisation to reported emissions Hirarchy of data sources (national data first) Thorough research on quality of sources
Recent policy development not included	 Qualitative assessment of relevancy If relevant, own quantitative assessment Various standardised tools for specific policy instruments
 Interactions between policies/sectors Policies targeting same area Demand and supply sector dependencies 	 Quantify strongest policy in area, others reflect likelyhood of implementation Demand side first, adapt energy supply sector

Conclusions

- Applying the method to more than 20 countries has proven it is useful.
- The method has certain strengths and weaknesses:

Strengths	Weaknesses
High flexibility regarding data and time availability	No complex feedback loops considered
Adaptable to different countries and policies	Lack/uncertainty of data not necessarily visible
Simple and transparent calculations	Requires thorough case by case documentation

- Further possible application in different context possible:
 - Quantification and evaluation of Intended Nationally Determined Contributions (INDCs)
 - Determine trends of emissions or other indicators of sub-national stakeholders or companies/other organisations