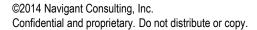


ENERGY

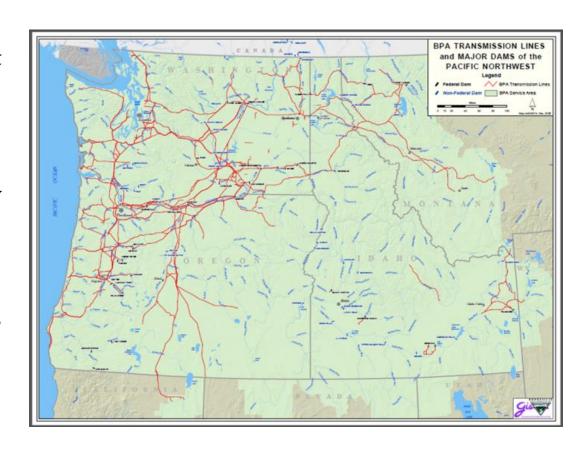
The Benefits and Costs of *Smart Grid Enabled* Demand Side Management


Interim Results from Pacific Northwest Smart Grid Regional Business Case (RBC)

IEPPEC, Berlin 9 September, 2014

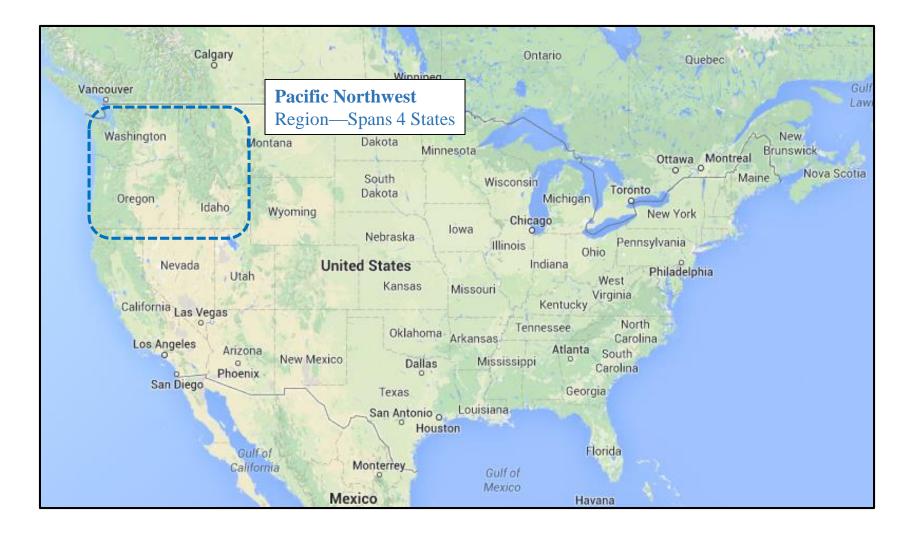
1 » Overview and Context

- 2 » Overall Benefit-Cost Results
- 3 » Energy Efficiency Findings
- 4 » Demand Response Findings


1

5 » Looking Forward

Scope of the Analysis


- **Region:** Pacific Northwest
- **Time horizon:** 30 years forward looking
- Smart Grid Definition
 - capabilities use two-way communications, and
 - some level of automated intelligence
- Six investment categories are considered
 - EE and DR represent 2 of the 6 categories
 - 32 individual smart grid functional capabilities

- Benefits and Costs are *Incremental* to "traditional" approaches and investment (uncertainty analysis is integrated in the model)
- The analysis work has been ongoing for the past 4 years

Location of Region within North America

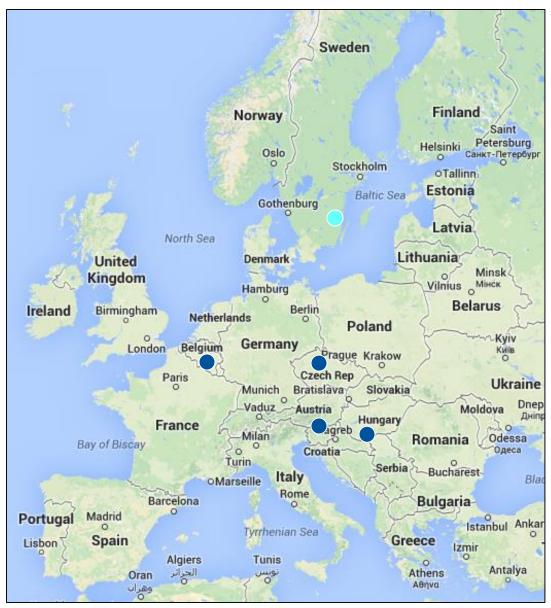
Motivation for the Study

Bonneville Power Administration (BPA) commissioned this work* to:

- Understand the *potential* for smart grid benefits
- Understand the *risks* for regional stakeholders
- Assist Regional stakeholders by providing information to help make appropriate investments in smart technologies.

BPA is a Federal (U.S. Government) Power Agency

- Operates ¾ of the transmission (100kV+) in the Region, and
- 2/3 of the generation (including hydro system and nuclear)
- Is chartered as "a steward" of the Region's resources


Regionally

- Approximately 6M electric power customers in the region
- Approx. 60,000 MW peak regional capacity, winter peaking

^{*} A white paper with extensive detail is available on the Bonneville Power Administration website at: http://www.bpa.gov/Projects/Initiatives/SmartGrid/Pages/default.aspx
NAVIGANT

Region Comparison to Selected European Countries

- Similar number of connected customers (near 6M)
- Generally lower consumption and peak demand (1/2 to 1/3)
- Sweden with similar consumption, but only about half peak demand
- End-use consumption profiles, technologies, and approaches are different

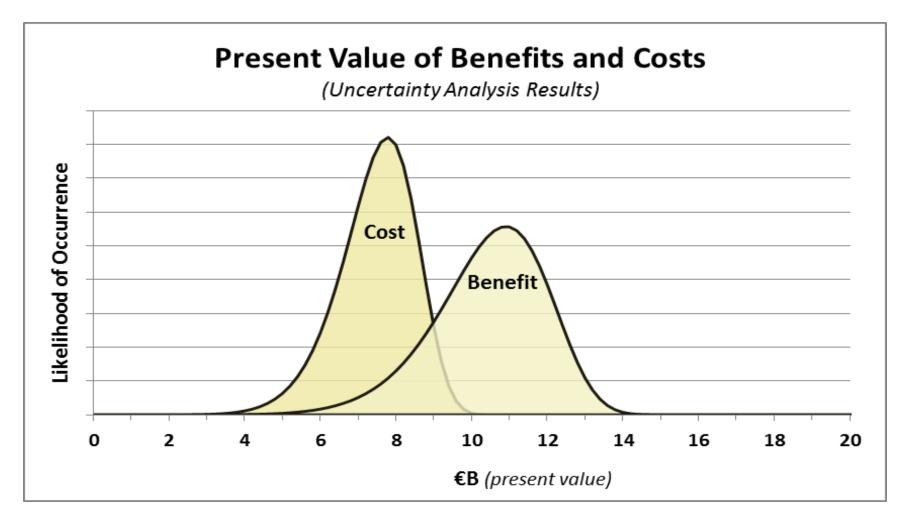
Comparison of Regional Electricity System Characteristics

Country/Geography	Number of DSOs 2011	Number of DSOs with > 100,000 customers	Total Number of Connected Customers	TWh/yr (2010)	MW Peak (2010)
Pacific Northwest (U.S.)*	141	10	6,365,036	161,000,000	60,657
Austria	138	13	5,870,000	65,000,000	21,400
Belgium	24	15	5,243,796	90,000,000	18,322
Czech Republic	3	3	5,837,119	64,000,000	20,073
Denmark	72	6	3,277,000	35,000,000	13,420
France	160**	5	33,999,393	513,000,000	123,783
Germany	880	75	49,294,962	565,000,000	166,329
Greece	2	1	8,195,725	59,000,000	16,729
Hungary	6	6	5,527,463	40,000,000	8,753
Ireland	1	1	2,237,232	25,000,000	8,495
Italy	144	2	31,423,623	331,000,000	106,489
Netherlands	11	8	8,110,000	117,000,000	26,636
Poland	184	5	16,478,000	142,000,000	32,832
Portugal	13	3	6,137,611	55,000,000	18,797
Spain	350**	5	27,786,798	278,000,000	98,837
Sweden	173	6	5,309,000	147,000,000	35,701
United Kingdom	7	7	30,828,266	366,000,000	93,146
Total EU	1839	195	263,370,337	3,276,000,000	907,406

^{*} Source for numbers for Pacific Northwest is U.S. EIA, and all numbers are from 2011

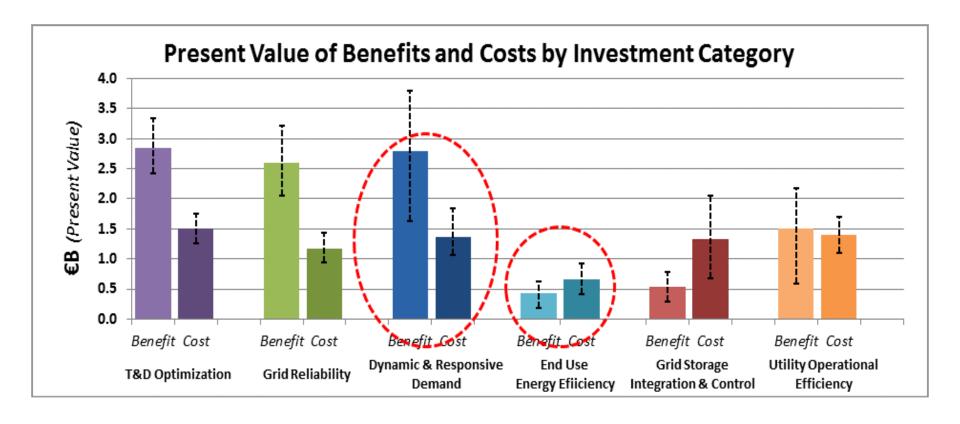
^{**}Source: Eclareon and Oko-Institut (2012), Integration of electricity from renewables to the electricity grid and to the electricity market

1 » Overview and Context



2 » Overall Benefit-Cost Results

- 3 » Energy Efficiency Findings
- 4 » Demand Response Findings
- 5 » Looking Forward



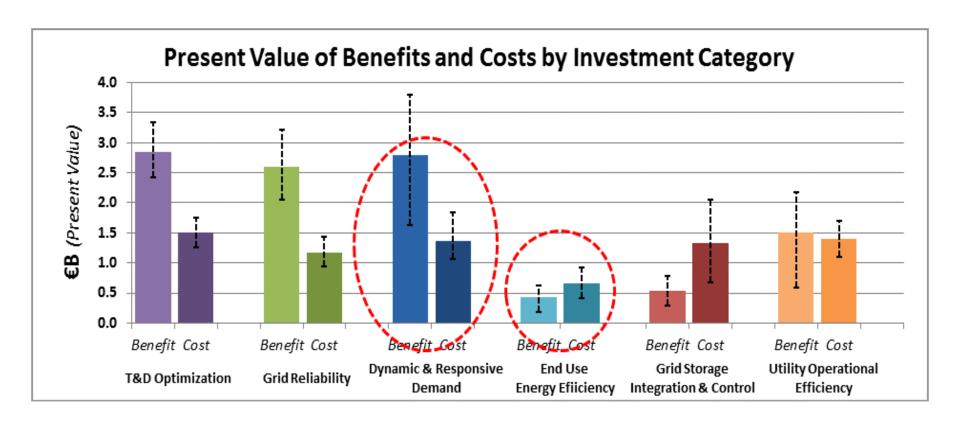
Smart Grid investment looks attractive overall (including all 6 major investment categories)

Six Investment Categories Show Different Returns and Risks

- 1 » Overview and Context
- 2 » Overall Benefit-Cost Results
- **>>**
- 3 » Energy Efficiency Findings
- 4 » Demand Response Findings
- 5 » Looking Forward

Smart Grid Capabilities for End-Use Energy Efficiency

- *Smart* end-use Energy Efficiency (EE) encompasses enhancements beyond traditional EE measures that <u>require smart grid functionality</u>
- Capabilities that might reduce energy consumed by customers include:
 - Enhanced information feedback, and techniques to facilitate consumer behavior change
 - Capabilities for automated energy management
 - Identification of poorly performing equipment as candidates for replacement or maintenance
 - Equipment upgrades and improved maintenance for efficiency purposes
- Note that this analysis does not address the cost effectiveness of *traditional* end-use energy efficiency measures, and only addresses end-use efficiency to the degree it is impacted by smart grid functionality.



Initial Findings for End-Use Energy Efficiency Investment Area

- Lighting—smart grid does not add much benefit for the cost
 - "traditional" lighting efficiency measures don't leave much room for smart grid-examples:
 - Changing out lights for FCLs or LEDs is not a smart grid activity
 - day-lighting and occupancy sensors and controls can achieve additional savings, but also don't require smart grid
- Information feedback and behavior change can be implemented without SG
 - Again, non smart-grid measures create challenging *baseline* for SG—example:
 - Home Energy Reports (HERs) have been fairly successful without smart grid capabilities
- **Equipment replacement and maintenance** is farther in the future
 - Holds promise, but affects are estimated to be many years in future, greatly reducing NPV in analysis
 - May eventually be able to leverage smart grid infrastructure "for free" if installed for other reasons
- Non-end use efficiency (e.g., conservation voltage reduction)
 - Analysis indicates that by far the largest potential EE application for smart grid is Conservation Voltage Reduction (CVR) and related voltage optimisation approaches
 - However, it has it's own challenges from a structural perspective

End-Use Energy Efficiency Looks Quite Limited

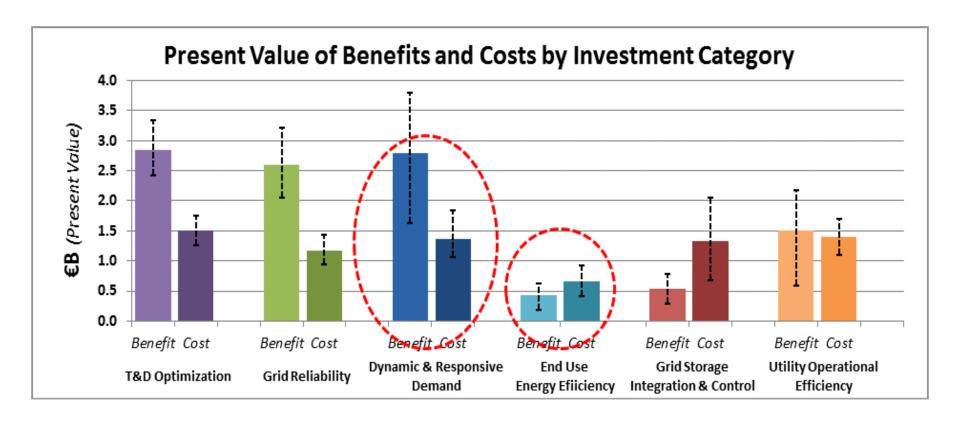
- 1 » Overview and Context
- 2 » Overall Benefit-Cost Results
- 3 » Energy Efficiency Findings

4 » Demand Response Findings

5 » Looking Forward

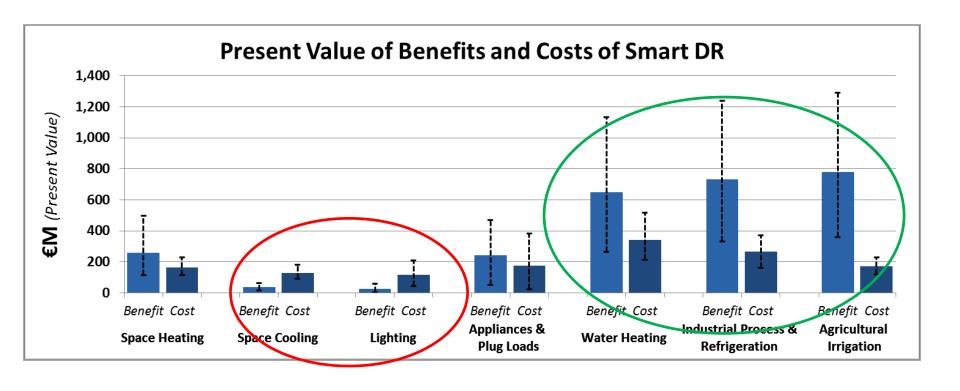
Smart Grid Capabilities for Demand Response

- Many forms of DR are possible without smart grid, and have been feasible for decades.
 - However, smart grid can bring important benefits to DR programs that traditional DR mechanisms cannot provide
 - These require more advanced communication and control capabilities.
- To capture the incremental benefits of smart DR, the study applied a breakout:
 - by seven end-use categories,
 - four customer sectors, and
 - three degrees of intelligence (curtailment events, real-time pricing, and fast-acting ancillary services). Generally
- The Analysis considered the administrative overhead, operations, engineering, contracting, and other labor costs associated with establishing and maintaining the different types of DR asset systems.
- In general, DR is more attractive from a cost-benefit perspective when the load per control point is high.


Regional Smart DR Deployment Assumptions

Smart DR End Use	Final Market Penetration (% of end use load)	Years to Reach Assumed Final Penetration (yrs)
Space Heating	10%	12
Space Cooling	8%	12
Lighting	3%	12
Appliances & Plug Loads	5%	12
Water Heating	10%	12
Industrial Process & Refrigeration	10%	12
Agricultural Irrigation	20%	12

- Deployment assumptions leveraged many information sources about DR that has been deployed in the region already
- The assumptions about future deployment were vetted by Regional subject matter experts (SMEs)



Dynamic and Responsive Demand Looks Quite Good

Smart DR Investment Returns Vary Widely by Target End-Use

- 1 » Overview and Context
- 2 » Overall Benefit-Cost Results
- 3 » Energy Efficiency Findings
- 4 » Demand Response Findings

5 » Looking Forward

The RBC Process: Takeaways and Looking Forward

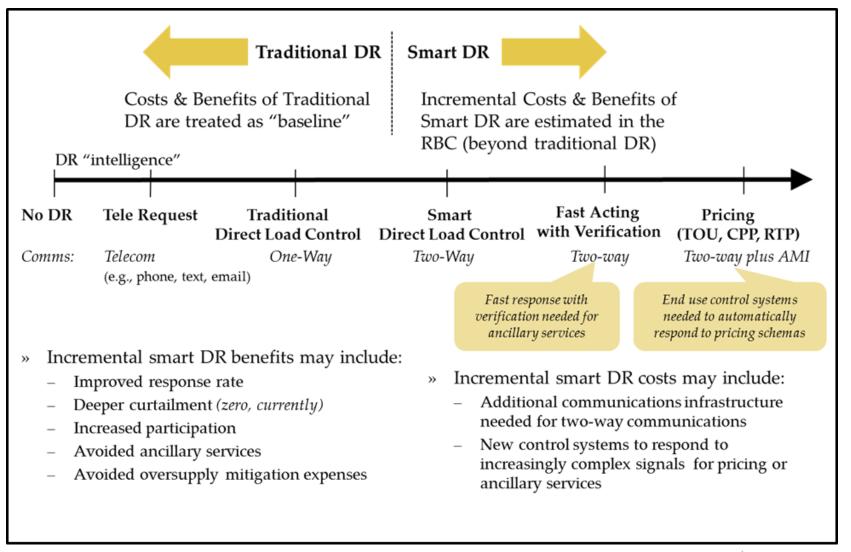
- Plans for continuing this analysis
 - White paper analysis to be updated in 2015
 - Regional inputs and assumptions will be updated prior to analysis
 - Inputs will be finalized from the Pacific Northwest Regional Smart Grid Demonstration Project the largest federally funded Demonstration Project in the U.S.
- This analysis methodology and model is being used in other jurisdictions
 - Smart Grid Great Britain is sponsoring a smart grid benefit cost analysis of U.K. Plc.
 - Ministry of Energy in Ontario Canada has commissioned an analysis for that Province.
- Navigant is re-engineering the Regional Resource Planning Model (RPM) focused on integrated Regional planning for DSM and generation.
 - Working with another Regional Planning entity, the Northwest Power and Conservation Council
 - Leveraging the same modeling platform (Analytica)
 - Navigant is working on developing a Demand Response supply curve for the region, that will eventually be used in the RPM.

Key CONTACTS

Erik Gilbert

Director
Boulder, CO, U.S.A.
(303) 728-2536
erik.gilbert@navigant.com

Ian Smyth


Managing Director London, England (207) 469-1129 <u>ian.smyth@navigant.com</u>

Dimitris Vantzis

Senior Consultant London, England (207) 015-2362 <u>dimitris.vantzis@navigant.com</u>

Illustration of the *Smart* DR Definition

