

Interpreting cost-effectiveness: target definitions versus policy objectives

Robert Harmsen IEPPEC, Berlin, 9-11 September 2014

Which option would be preferred?

	Technology A	Technology B
Support costs (€/ton CO ₂ reduced)	72.3	94.8

Technology A needs the least support costs to get implemented, so would probably be preferred from a cost point of view.

Which option would be preferred?

	Technology C	Technology D
Support costs	6.0	11.7

Here, Technology C needs the least support costs to get implemented

What you should know

	Technology A	Technology B
Support costs (€/ton CO ₂ reduced)	72.3	94.8

	Technology C	Technology D
Support costs (€/GJ final energy saved)	6.0	11.7

- Technology A (preferred) = Technology D (not preferred)
- Technology B (**not** preferred) = Technology C (preferred)

Topic & aim of this presentation

- Interpretation of cost-effectiveness
- Aim: contribute to knowledge on SMART target setting and policy design

Cost-effectiveness analysis..

- ... provides a frame of reference for relating costs to the results of subsidy programmes
- ... expresses cost-effectiveness in terms of the costs of achieving a given result

Context

- An important goal in ex-ante evaluation is budget allocation
- Knowing which technology offers the biggest pay-off per euro of support allows for a comparison and ranking of technologies

Question

- The choice of the denominator (e.g. kWh_e, GJ_p, CO₂) in cost-effectiveness calculations often links to the target definition of a subsidy programme...
- ... does this influence the ranking of technologies?

• Answer: yes

 Example case: Dutch feed-in for Renewables

	·····	¥		
	SDE priority ranking	Priority ranking by substituted fossil primary energy Priority ranking by avoided CO ₂ er		
Most cost effective	WWTP - green gas	Hydropower renovation	Hydropower renovation	
↑	boiler fired by solid biomass 2 5 MWth	WWTP - green gas	WWTP - green gas	
	Deep seathermal - low temperature	Onshore wind (stare 1)	Onshore wind (stare 1)	
	boiler fired by solid biomass < 5 MWth	holler fired by solid biomass < 5 MW/th	holler fired by solid biomass < 5 MWth	
	Deep geothermal - high temperature	All feedstock digestion - heat	Onshore wind (stage 2)	
	All feedstock digestion - heat	Onshore wind (stage 2)	Onshore wind >= 6 MW(stage 2) WWTP the rmal pressure hydrolysis	
	Hydropower renovation	Onshore wind >= 6 MW(stage 2)		
	All feedstock digestion - green gas	WWTP thermal pressure hydrolysis	All feedstock digestion - heat	
	boiler fired by liquid biomass	boiler fired by solid biomass ≥ 5 <u>MWth</u>	onshore wind >= 6 MW(stage 3)	
	Manure co-digestion - heat	Deep geothermal - low temperature	onshore wind (stage 3)	
	thermal conversion (>10 MW(e)	onshore wind >= 6 MW(stage 3)	boiler fired by solid biomass ≥ 5 MWth	
	Manure co-digestion - green gas	onshore wind (stage 3)	Deep geothermal - low temperature	
	All feedstock digestion (extended life) - OHP	onshore wind >= 6 MW (stage 4)	onshore wind >= 6 MW(stage 4)	
	Onshore wind (stage 1)	Deep geothermal - high temperature	Deep geothermal - high temperature	
	Deep geathermal energy - OHP	boiler fired by liquid biomass	boiler fired by liquid biomass	
	All feedstock digestion - CHP	Manure co-digestion - heat	Solar PV >15 kWp	
	WWTP the rmal pressure hydrolysis	All feedstock digestion - green gas	Wind in lake	
	Onshore wind (stage 2)	Solar PV >15 W/p	Manure co-digestion - heat	
	Onshore wind >= 6 MW(stage 2)	Wind in lake	All feedstock digestion - green gas	
	Agricultural digester - CHP	All feedstock digestion (extended life) - CHP	Hydro power new All feedstock digestion (extended life) - OHP	
	onshore wind >= 6 MW (stage 3)	Hydro powernew		
	onshore wind (stage 3)	All feedstock digestion - CHP	Offshore wind	
	Manure co-digestion - CHP	thermal conversion (>10 MWe)	All feedstock digestion - CHP	
	Manure mono-digestion - green gas	Agricultural digester - CHP	thermal conversion (>10 MWe)	
	onshore wind >= 6 MW (stage 4)	Manure co-digestion - green gas	Agricultural digester - CHP	
	Solar thermal >100m2	Offshore wind	Manure co-digestion - green gas	
	Gasification -green gas	Deep geathermal energy - OHP	Deep geothermal energy - OHP	
	Solar PV >15 KWp	Manure co-digestion - CHP	Manure co-digestion - CHP	
	Thermal conversion (<10 MMe)	Solar thermal >100m2	Solar thermal >100m2 free tidal current energy	
	Wind in lake	Manure mono-digestion - green gas		
	Hydro power new	free tidal current energy	Manure mono-digestion - electricity	
	Offshore wind	Thermal conversion (<10 MWe)	Manure mono-digestion - green gas	
	free tidal current energy	Manure mono-digestion - electricity	Thermal conversion (<10 MWe)	
Ŷ	Manure mono-digestion - electricity	Gasification - green gas	Gasification - green gas	
Least cost-	Ormaria	Ormaria	Ormoria	
	Call Sala	Call Sala	Call Sala	

Copernicus Institute of Sustainable Development

What does it mean?

- Cost-effectiveness using final energy as denominator penalizes RES electricity and favors RES heat
- For cost-effective achievement of a final RES target, this makes sense
- But does it, when the overarching RES target is *improving security of supply* or *mitigating climate change*?

Just theory or a real-life issue?

	Annual production 2012 RE projects [PJ]	Annual production 2013 RE projects [PJ]	Total production in 2012 [PJ]	Projected production in 2020 according to NREAP [PJ]
Onshore wind	>0	3.1	15.0	48.1
Offshore wind	0	0	2.8	68.5 (27)
Deep geothermal energy	8.1	3.2	0.5	10.8

NREAP = national renewable energy action plan

It is a *real-life* issue in case technologies:

- compete for the same budget
- this budget is limited

Relevance for energy efficiency?

- Same issue
- Cost-effectiveness based on final energy penalizes electricity and favors heat
- If the overarching objective of an EE policy is security of supply, cost-effectiveness based on primary energy better reflects the costs for meeting that objective

General implications

- If budgets are tight and need to be shared by different type of technologies, costeffectiveness calculations should have an eye for the overarching objectives of a policy rather than sticking to the way the target is (coincidentally) defined.
- SMART targets targeting different type of technologies - should preferably be aligned to the overarching objectives to avoid sending out the wrong signals to program managers / policy makers

Thanks for your attention

Contact details

- Robert Harmsen
- <u>R.Harmsen@uu.nl</u>
- +31 30 2534419