

International Energy Policies & Programmes Evaluation Conference Connecting Evaluators, Implementers and Stakeholders of Low Carbon Policies and Programmes 2014 Event - Berlin, Germany - September 9-11 - Pre-Conference Workshops on September 8

Evidence of an indirect rebound effect with air-to-air heat pump: to have and not to use?

D.Osso, EDF-R&D, Moret-sur-Loing, France M.Raynaud, EDF-R&D and CES – MINES ParisTech, Moret-sur-Loing, France B.Bourges, GEPEA – MINES Nantes, Nantes, France B.Duplessis, CES – MINES ParisTech, Paris, France J.Adnot, MINES ParisTech, Paris, France

• In housing sector:

- In EU, few *ex-post* evaluations of local energy efficiency programs
- Less studies about **indirect rebound effect** linked to air conditioning than studies about direct rebound effect linked to space heating (Sorrell 2007)
- Whereas direct electric heating space heating systems replaced by reversible air-to-air heat pumps in France
- In 2012 1,3 millions air-to-air heat pumps sold in UE including 80,000 in France (EurObservER 2013)
- Our approach:
 - **Statistical modeling** of the annual energy consumption change where air-toair heat pumps have been installed

Aims of this study

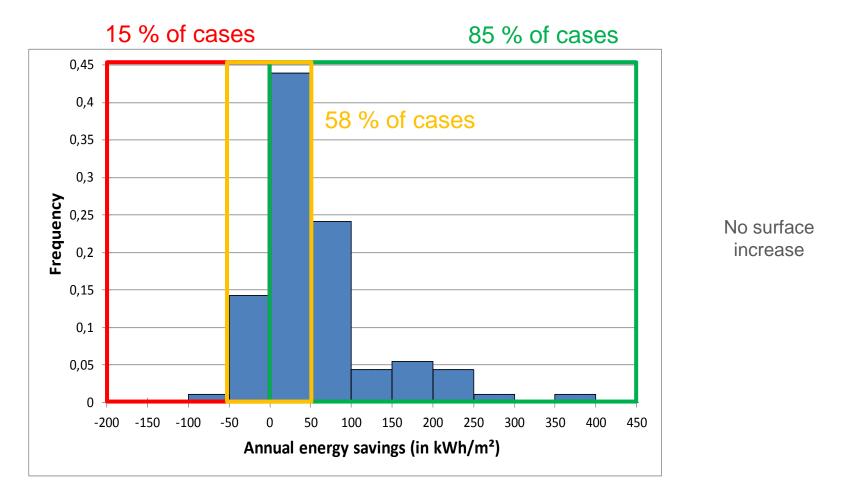
- To quantify energy savings generated by air-to-air heat pump installations in southern France
- To assess the robustness of observed energy savings
- To study potential rebound effects (direct and/or indirect) occurring after such refurbishment

The operation studied... and the dedicated inquiry

- The energy efficiency operation:
 - Southern regional energy efficiency programme in France in *Provence-Alpes-Côte d'Azur* launched by EDF in 2009
 - Target: an annual rate of refurbishment of 10%/y instead of 3%/y actually, within a building stock of 200,000 houses built before 1990 and heated by electricity
- The inquiry:
 - Telephone survey during 2012
 - Informations required: building typology, energy systems, behaviour, retrofitting actions (with and outside the program), total energy bills (on the last three years)
 - 212 filled questionnaires

The sample

- 91 questionnaires presenting both situations ("before" and "after")
- Type of dwellings: recent (built >1975 and <2001) single family housing mainly initially equipped with direct electric heating
- 84 % of the dwellings **without air conditioning** system
- Type of refurbishment: installation of heat pump coupled with a second action (roof insulation, solar water heater)


Energy savings calculations

$$ES_i = C_{i,be}^{norm} - C_{i,af}^{norm}$$

- with *ES_i* annual energy savings of case *i* (in kWh, final energy)
- C^{norm.}: climate adjusted annual total energy consumption (in kWh) with θ = before (be) or after (af) retrofitting
- Total end-uses consumption = sum of declared consumptions for different energies (electricity, gas, LPG, wood...)(in kWh_{LCV})
- Climate normalization only done on space heating consumption:
 - Normal climate (average over 20 years): HDD between 1600 and 1300 °.day per year
 - Space heating consumption share: 70% of total final consumption (average national value for individual housing)
 - No Cold Degree Day adjustment, not reliable (Day 2004)

Existence of energy savings?

- > A large majority presents positive energy savings (*i.e.* consumption drop)
 - Nevertheless, a large share of cases presents energy savings in an interval between -50 and 50 kWh/m²

Robustness of energy saving: methodology

- Calculation of uncertainties linked to energy savings by propagation of uncertainties from:
 - Declared consumptions of fuel oil, LPG, wood (lack of proper metering)
 - Share of space heating consumption in the all end-uses consumption used for the climate adjustment
- Definition of the uncertainties by the confidence intervals at level 95 %:
 - Are robust, energy savings with a reliable sign (+ or -), *i.e.* the lack of zero in the confidence interval at level 95 %

Robustness of the energy savings: results

 Given the difficulty to choose a value of uncertainty, we performed a sensitivity analysis based on three scenarios of uncertainties

Breakdown of 91 cases according to energy savings robustness (in %)

	Uncertainty scenario			
Share (%)	Optimistic	Realistic	Pessimistic	
Non-robust	5.5	10.0	18.0	
Robust with - sign	13.0	10.0	40	
Robust with + sign	(81.5)	(80.0)	(78.0)	

Whatever the uncertainty scenario, the cases with robust and positive energy savings are predominating

Does it exist declared rebound effects?

$$variable_{i}^{explained} = \alpha + \sum_{j=1}^{N_{j}} a_{j} * variable_{j,i}^{quantitative} + \sum_{k=1}^{N_{k}} \sum_{l=1}^{m_{k}} b_{kl} * variable_{k}^{qualitative} _modality_{l,i} + \varepsilon_{i}$$

- Response variable: total annual energy consumption after retrofitting at normal climate and for 1 m² of surface area (in kWh/m²)
- Change model type: include the annual energy consumption before retrofitting
- **Explanatory** variables linked to rebound effects:
 - Declared change of heating set temperature in the living rooms between before and after retrofitting (in °C)
 Direct rebound effect
 - Declared use of air conditioning after retrofitting (a coupling between the declared time of use during summer and declared set temperature)
 Indirect rebound effect

Statistical method used

- Quantitative and qualitative variables -> covariance analysis (ANCOVA, general linear statistical modeling)
- Backward selection to retain significant variables with at least a significance level of 0.05 on Student's test
- Reference of the quantitative variables with constraint «coefficient of the first category = 0»
- It is verified that:
 - Explanatory variables do not present colinearity (Variat. Inflat. Factor \leq 3)
 - Residuals are homoscedastic (graphic verification)
 - Residuals are normally-distributed (Jarque-Bera's test)

Model highly significant (Pr to Fisher's test <0.0001) Explanation and prediction capacities limited (adj. R² = 0.37 ; RMSE* = 36.5 kWh/m²) * RMSE= Root-Mean-Square Error

Results of the statistical model

 $C_{i,af}^{norm,m^2} = \alpha + a_1 * C_{i,be}^{norm,m^2} + \sum_{l=1}^{4} b_{1l} * declared use air conditioning_modality_{l,i} + \varepsilon_i$

- Energy savings* of 69.2 kWh/m² for the reference case**
- Only two variables kept by the selection procedure amongst 8 variables:
 - Energy consumption before retrofitting
 - Declared use of air conditioning after retrofitting
- "Energy consumption before retrofitting" effect: an additional energy savings of 0.7 kWh/m² per each kWh/m² of initial overconsumption relative to the sample mean (174.5 kWh/m²)

• Direct rebound effect: no statistical evidence

*confidence interval at level 95 %: [59.5; 78.9])

** hypothetical case with an annual energy consumption before retrofitting equals to the sample mean (174.5 kWh/m²) and a household having declared to not use air conditioning after retrofitting (and for all categories or values of non significant variables)

Indirect rebound effects

- An important use of air conditioning after retrofitting presents higher energy consumptions after retrofitting:
 - around an increase of +39.5 kWh/m²
 - but with a large uncertainty: confidence interval at level 95 %=[21.9; 57.1]
 - and representing **only 31%** of studied households
- Indirect rebound effect quantification:

energy savings losses estimated with declared air conditioning use energy savings estimated with no air conditioning use

Average on every cases of the sample: 29 % with a confidence interval at level 95 % =[12 %; 46 %]

Conclusions

- This study of a regional operation promoting air-to-air heat pumps in a Mediterranean area has shown:
 - Whatever the uncertainty scenario, the vast majority of studied households presents robust and positive energy savings
 - Only 31 % of the sample declaring an important use of air conditioning after retrofitting have significant energy savings losses BUT the quantified effect presents a high uncertainty
- Future works needed in order to enhance the validity of those results:
 - To increase the samples from a new survey
 - To reduce the uncertainties linked to the information about households behaviours

Many thanks for your attention !

Your comments and suggestions are welcome at: dominique.osso@edf.fr

References

Day, A. R. 2004. "Cooling energy consumption and temperature." *Market Transformation Programme Seminar*

EurObservER 2013, http://www.energies-renouvelables.org/observ-er/stat_baro/observ/baro 218.pdf

Sorrell, S. 2007. *The Rebound Effect: an assessment of evidence for economy-wide energy savings form improved energy efficiency.* Technology and Policy Assessment function, UK Energy Research Centre. ISBN 1-903144-0-35

Sorrell, S., and J. Dimitropoulos. 2008. "The rebound effect: Microeconomic definitions, limitations and extensions." *Ecological Economics* 65:636-649

Appendix

• Synthesis of the three uncertainty scenarios:

	Scenario	Bounds [a.; a+]	Probability distribution ¹	Standard uncertainty	
Observed consumptions for oil (C _{oil}), LPG (C _{LPG}), wood log (C _{woodl}) or wood pellets (C _{woodp})	Optimistic (interval/2)	[0.9C _e ; 1.1C _e]	Symmetric trapezoidal distributions		
	Realistic	$[0.8C_e; 1.2C_e]$	having equal sloping sides, with bases of	$\sqrt{\frac{(a_{+} - a_{-})^{2} * (1 + 0.5^{2})}{24}}$	
	Pessimistic (interval*2)	$[0.6C_e; 1.4C_e]$	width a_+ - a and tops of width $(a_+$ - $a)*0.5$		
Hypothesis on space heating share in total consumption (0.7)	Optimistic (interval/2)	[0.665 ; 0.74]	Rectangular	$\sqrt{\frac{(a_+ - a)^2}{12}}$	
	Realistic	$[0.63; 0.78]^2$	distributions with		
	Pessimistic (interval*2)	[0.56 ; 0.86]	widths a_+ - a		

Appendix

• Explanatory variables used for the statistical model of $C_{i,af}^{norm.,m^2}$ (sample=82):

Variable	Definition				
Quantitative variables					
	Difference between the total annual energy consumption before retrofitting at normal				
Energy consumption before retrofitting	climate $(C_{i,bf}^{norm .,m^2})$ and 174.5 kWh/m ² (mean of the sample);				
	reference unit: 1 kWh/m ² (final energy); [-118.2 ; 360.1]				
Declared change of heating set temperature	Declared change of heating set temperature due to the retrofitting; reference unit: 1°C; [-3.5 ; 5.5] (22 % of a value different to zero with 17 % of a positive value and 5 % of a negative value).				
Qualitative variables and their categories					
Type of heat pump installed	0- air-to-air heat pump (85 % of the sample); 1- air-to-water heat pump (15 %)				
Type of second action realized	0- roof insulation (79 % of the sample); 1- SHW (21 %)				
Declaration of action realized outside the operation	0- no additional action(s) declared (78 % of the sample); 1- additional action(s) declared (22 %)				
Declared use of air conditioning after retrofitting	 0- no use declared (45 % of the sample); 1- low use declared with set temperature <23 °C (13 %); 2- low use declared with set temperature ≥23 °C (11 %); 3- important use declared with set temperature <23 °C (16 %); 4- important use declared with set temperature ≥23 °C (15 %) 				
Declared change in occupation	\sim 1 - increase declared (X %)				
Bad workmanship	anship 0- no bad workmanship declared (90 % of the sample); 1- bad workmanship declared (10 %)				

The type of heat pump installed

- Air-to-air (85 % of the sample) vs air-to-water (15 %): variable found non statistically significant BY THE MODEL
- Whereas a difference exists according to energy savings calculations:

ES_i (in kWh/m ²)		Mean	Confidence interval at level 95 %
Type of heat pump installed	Air-to-air	47.3	[31.2; 63.4]
	Air-to-water	115.0	[70.8; 159.3]

- Difference taken into account by the statistical model via:
 - A higher inital energy consumption for air-to-water installations than for air-to-air installations (averages: 244.4 kWh/m² vs 162.5 kWh/m²)
 - Declarations of more intensive use of air conditioning for air-to-air installations than for air-to-water installations (all households declaring important use installed air-to-air)

