

Lessons learned from M&V practice of RMR programme in South Africa

Xianming Ye and Prof. Xiaohua Xia

Centre of New Energy Systems Department of Electrical, Electronic and Computer Engineering University of Pretoria

OUTLINE

- 1. Introduction to M&V
- 2. M&V for RMR programme
- 3. M&V plan and metering plan
- 4. Lessons learned
- 5. Conclusion

1. Introduction to M&V

1.1 GENERAL M&V PRINCIPLE

UNIVERSITEIT V

ENES

UNIVERSITY YUNIBESITHI

1.2 M&V REPORTING PROTOCOL

	Weekday (MW)									
	Morning	Morning	Morning	Midday	Evening	Evening	Evening Off-			
	Off-peak	Standard	Peak	Standard	Peak	Standard	peak			
Baseline	1.563	5.394	5.218	3.112	4.572	4.132	2.646			
Actual	1.363	4.702	4.549	2.713	3.986	3.602	2.307			
Impact	0.200	0.691	0.669	0.399	0.586	0.530	0.339			
		S	Saturday (MW	/)			Sunday (MW)			
	Morning	S Morning	aturday (MW Midday Off-	/) Evening	Evening Off-		Sunday (MW) Off-peak			
	Morning Off-peak	S Morning Standard	aturday (MW Midday Off- peak	/) Evening Standard	Evening Off- peak		Sunday (MW) Off-peak			
Baseline	Morning Off-peak 2.110	S Morning Standard 4.623	aturday (MW Midday Off- peak 2.905	() Evening Standard 4.572	Evening Off- peak 3.389		Sunday (MW) Off-peak 3.251			
Baseline Actual	Morning Off-peak 2.110 1.840	S Morning Standard 4.623 4.031	Saturday (MW Midday Off- peak 2.905 2.533	 Evening Standard 4.572 3.986 	Evening Off- peak 3.389 2.955		Sunday (MW) Off-peak 3.251 2.834			

Megaflex, WEPS, Miniflex and Ruraflex

Weekday evening peak (WEP) demand reduction

Source: Eskom Tariffs & Charges Booklet 2012/13

5

BNES

2. M&V for RMR programme

2.1 RMR SCOPE & TECHNOLOGIES

Technologies	Unit numbers	Percentage
CFLs	$4\ 315\ 597$	82.8%
LEDs	$766\ 358$	14.7%
Showerheads	113 750	2.2%
Geyser timers	18 316	0.4%
Pool pump timers	2	0.0%
Geyser blankets	0	0
Total	$5\ 214\ 023$	100.0%

- 1. National mass roll out
- 2. Bulk replacement per house
- 3. EE device issued free
- 4. Evening peak demand reduction

2.2 RMR M&V PROCESS

- 1. Project boundary covers all type of installed EE units
- 2. Lack of baseline, calibrated simulation models apply
- 3. Cost-effective M&V Plan

9

²⁸NES

3. M&V plan and metering plan (lighting)

• Baseline:

Actual: $B(t) = \sum k = 1 \uparrow K = P \downarrow k \times N \downarrow k \times LP(t) \times u \qquad A(t) = \sum k = 1 \uparrow K = P \downarrow k \uparrow \times N \downarrow k \times LP(t) \times u$

- k: kth proposed lighting group
- *Plk* : Rated power of exiting lights
- $P \downarrow k \uparrow$: Rated power of EE lights
- $N \downarrow k$: Number of installations
- LP(t) is the percentage load profiles, normalised against peak demand
- *u*: Global utilisation factor (coincidence factor)

• Savings:

Savings \downarrow LT $(t) = \sum k = 1 \uparrow K = (P \downarrow k - P \downarrow k) \times N \downarrow k \times LP(t) \times u$

- Lighting percentage load profile
 - Statistically representative: on site measurement

- Borrow from similar project: type of household, same technologies involved, etc.
- Shape fixed but must be adjusted by the global utilisation factor (GUF).
- GUF=Lamps in use/Lamps dispatched, during evening peak (18:00 to 20:00)

Percentage load profiles with different GUFs

• Telephone survey

- 915 households reached;
- 13449 dispatched lighting units;
- 5900 lamps are burning during evening peak;
- 5900/13449=43.87%.

FINDINGS ON LIGHTING GUF

Lamp per house	Sample size	Audited installation	Number of burning	Lighting GUF
1	69	69	68	99%
2	71	142	118	83%
3	61	183	138	75%
4	74	296	232	78%
5	46	230	176	77%
6	46	276	201	73%
7	26	182	125	69%
8	33	264	166	63%
9	22	198	103	52%
10	29	290	162	56%
11	23	253	131	52%
12	17	204	102	50%
13	25	325	123	38%
14	12	168	74	44%
15	10	150	90	60%
16	12	192	72	38%
17	7	119	48	40%
18	8	144	57	40%
19	7	133	52	39%
20	25	500	198	40%

ENES

ENES

Lighting GUF fitting

$$f(x) = \begin{cases} -0.1157x + 1.0883, & x \in [1,3] \\ -0.0505x + 1.0140, & x \in [4,9] \\ -0.0293x + 0.8479, & x \in [10,12] \\ 0.38, & x \in [13,35] \\ 0.46, & x \in [36, +\infty) \end{cases}$$

f(x) : Fitted curves of lighting GUFx: number of the retrofitted lamps per house

4. Lessons learned

- Colour coding on lamps issued
- Counting and crushing certificate
- Direct replacement instead of retrofitting lamps in cupboard
- Restrict number of free samples issued per house
- Audit the installation database

- Avoid double counting:
 - Geyser timers + RLM devices
 - Pool pump timers → Pool pump timers
 - EE showerheads → EE showerheads
 - Geyser timers + Showerheads
- Maintenance
 - Lamp failure
 - Timer setting drifts after outage

5. Conclusion

- Experiences obtained from the M&V practice on the RMR programme are summrised and shared in terms of M&V plan and metering plan.
- The practical experience provides useful feedback to improve the programme design, i.e., the number of free EE devices are restricted per house, maintenance issues.
- New findings on lighting utilisation factors are revealed.

Thanks for your attention!

Questions?

