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ABSTRACT 

This paper conducts a meta-analysis of 151 pricing treatments that were offered on an experimental 
or full-scale basis in seven countries located in four continents.  It draws upon The Brattle Group’s Arcturus 
database which contains information on specific rate designs, whether or not enabling technologies were 
offered to customers in addition to these time-varying rates, and the amount of peak reduction resulting from 
each of the price and price-technology treatments.  A useful way to measure the intensity of the price signal 
is through the peak-to-off-peak price ratio.  A logarithmic model is used to quantify the relationship between 
the price ratio and the amount of peak reduction.  When demand response is expressed as a function of the 
price ratio, a clear pattern begins to emerge.  Customers respond to rising prices by lowering their peak 
demand, and as the price continues to increase, they continue to increase their response, but at a decreasing 
rate.  In addition, the use of enabling technologies boosts the amount of demand response.  This yields two 
“arcs” of price responsiveness.  Overall, we find a significant amount of consistency in the experimental 
results.  This finding is consistent with earlier analysis with time-of-use pricing studies that took place under 
Department of Energy (DOE) sponsorship in the late 1970s and early 1980s.  The results of this paper 
support the case for the rollout of dynamic pricing and can serve as a tool to quantify the potential peak 
reductions that result from different time-varying rates.   

Introduction 

Through the use of time-varying rates, utilities can lower their cost of doing business by lowering 
peak loads and raising load factors.  Rising costs have become a major concern for utilities.  Many are 
deploying advanced metering infrastructure (AMI) to improve the economics of the distribution system.  
AMI is a prerequisite for dynamic pricing.  About one of four households is on AMI today.  However, 
according to the latest FERC survey, less than two percent of households are on any form of time-varying 
rate and most of these are on simple, non-dynamic time-of-use rates.  Over the past decade, a number of 
dynamic pricing and time-of-use studies have been conducted around the globe.  Some of these have been 
randomized experiments, some have been quasi experiments, some have been demonstrations, and some 
have been full-scale deployments.  A full-blown meta-analysis would require the analyst to normalize for 
differences in experimental design; it would also require access to individual customer data.  Such a study 
was carried out by EPRI in the early 1980s by using data from five experiments with time-of-use pricing 
(D.W. Caves et. al.1984). Lack of individual customer data prevents us from carrying out such an analysis at 
this time.  However, as a first step in that direction, we have assembled aggregate data on demand response 
and prices from 33 studies which have published their findings.  These studies encompass experiments, quasi 
experiments and full-scale deployments. 

 We have compiled the information from these studies in a database called Arcturus.  The 33 
studies encompass a total of 151 treatments (where a treatment is defined as a unique combination of some 
type of time-varying pricing design and enabling technology).  At first glance, there is little consistency in 
the results:  the amount of demand response exhibited across the 151 treatments ranges from zero percent to 
58 percent.  This wide range of impacts has led some policy makers to conclude that our understanding of 
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customer behavior is not strong enough to proceed with universal deployment of dynamic pricing and time-
of-use pricing, even though smart meters are being deployed.  However, this range just represents the raw 
data, unfiltered by the intensity of the price signal that was conveyed to participants.  If the data from those 
treatments that only featured time-varying prices are plotted separately from those that featured time-varying 
prices with enabling technology, even sharper results are obtained, as enabling technologies increase demand 
response even more.   

We examine the impact of the price ratio on the magnitude of the reduction in peak demand using a 
simple regression model.  Because the amount of demand response varies with the presence or absence of 
enabling technology, such as a smart thermostat, an energy orb or an in-home display, we include a variable 
that indicates the use of enabling technologies.  We find a statistically significant relationship between the 
price ratio and the amount of peak reduction; the interaction variable between price and the use of enabling 
technologies has a significant relationship with the amount of peak reduction as well.  This relationship is 
termed the Arc of Price Responsiveness for reasons that will become clear later in this paper.  We find that 
for a given price ratio, experiments with enabling technologies tend to produce larger peak reductions, and 
display more price-responsiveness. 

   
The Time-Varying Rate Designs 

 
Time-varying rate designs charge different electricity rates at different times of the day and year.  

These rates reflect the time-varying cost of supplying electricity and incentivize consumers to decrease their 
electrical usage during peak hours and/or shift consumption to less expensive off-peak hours.  This paper 
examines the resulting peak demand reductions from four types of time-varying rates: Time-Of Use (TOU), 
Critical Peak Pricing (CPP), Peak Time Rebate (PTR), and Variable Peak Pricing (VPP) rates.  The last three 
options fall under the rubric of dynamic pricing.  While Real-Time Pricing (RTP) rates also fall into that 
rubric, and have been offered to customers in some of the published studies, the lack of a clear price ratio 
inhibits us from using these treatments in this paper. 

A time-of-use (TOU) rate could either be a time-of-day rate, in which the day is divided into time 
periods with varying rates, or a seasonal rate into which the year is divided into multiple seasons and 
different rates provided for different seasons.  TOU rates are fixed by period and consequently offer certainty 
as to what the rate will be and when they will occur.  In a time-of-day rate, a peak period might be defined as 
the period from 12 pm to 6 pm on weekdays, with the remaining hours being off-peak. The price would be 
higher during the peak period and lower during the off-peak period, mirroring the variation in marginal costs 
by pricing period.  TOU rates with three periods have also been offered.  Such rate schemes include a 
shoulder (or mid-peak) period, where the cost of electricity is lower than peak period rates, but higher than 
off-peak period rates.  Additionally, TOU rates may future two peak periods (such as a morning peak from 8 
am to 10 am, and an afternoon peak from 2 pm to 6 pm). 

On a critical peak price (CPP) rate, customers pay higher peak period prices during the few days a 
year when wholesale prices are the highest (typically the top 10 to 15 days of the year which account for 10 
to 20 percent of system peak load). This higher peak price reflects both energy and capacity costs and, as a 
result of being spread over relatively few hours of the year, can be in excess of $1 per kWh. In return, the 
customers pay a discounted off-peak price that more accurately reflects lower off-peak energy supply costs 
for the duration of the season (or year). Customers are typically notified of an upcoming “critical peak event” 
one day in advance, but if enabling technologies are used, these rates can also be activated on a day-of basis. 

Like on a CPP rate, customers on variable peak price (VPP) rates pay higher peak period prices 
during a few days a year when wholesale prices are highest.  The main difference between a critical peak 
price and a variable peak price is that the variable peak price varies from one event day to the next, as 
determined by market rates.  On-peak prices generally vary each day based on day-ahead market prices.  On 
non-event days, the VPP rate acts like a normal TOU rate, with fixed period prices. 
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If a CPP tariff cannot be rolled out because of political or regulatory constraints, some parties have 
suggested the deployment of a peak-time rebate (PTR). Instead of charging a higher rate during critical 
events, participants are paid for load reductions (estimated relative to a forecast of what the customer 
otherwise would have consumed). If customers do not wish to participate, they simply buy electricity 
through at the existing rate. There is no rate discount during non-event hours.  

Participants in real-time pricing (RTP) programs pay for energy at a rate that is linked to the hourly 
market price for electricity. Depending on their size, participants are typically made aware of the hourly 
prices on either a day-ahead or hour-ahead basis. Typically, only the largest customers —above one 
megawatt of load — face hour-ahead prices. These programs post prices that most accurately reflect the cost 
of producing electricity during each hour of the day, and thus provide the best price signals to customers, 
giving them the incentive to reduce consumption at the most expensive times. 

Enabling technologies such as programmable thermostats and in-home displays (IHDs) can be 
offered with time-varying rates in order to enhance the effectiveness of the rates by automating response and 
minimizing customer transaction costs.  Programmable communicating thermostats (PCTs) can receive a 
signal during a critical peak pricing event and automatically reduce air-conditioning usage to a level that is 
specified by the customer, reducing the need to manually respond to high-priced events.  Information-
enhancing technologies such as in-home displays (IHDs) can give customer information such as the amount 
of electricity that they are using, what it is costing them, how that translates into their carbon footprint, how 
close they are to energy savings goals, and other such data.  The information can also be provided online 
through web portals or even through a smartphone.  Energy orbs provide visual feedback to customers by 
changing color depending on the price of electricity.  

  
The 33 Studies 

 
The 33 studies encompassing 151 experimental treatments in the Arcturus database span four 

continents and seven countries.  
 
 
 
 
 
 

 
 sorts the peak reductions for each of the 151 experimental treatments from lowest to highest.  At first 

glance, there is little consistency in the results, for demand response varies from 0 percent to 58 percent.  
Some of the variation in demand response can be attributed to the different rate types tested.  Grouping the 
results by rate type slightly improves the resolution, but not by much.  There still remains significant 
variation among pricing types, as shown in Figure 1. Impacts from Residential Time-Varying Pricing Tests, 
Sorted from Lowest to Highest 
 

.  Due to their tendency to have higher price ratios than TOU rates, we find that CPP and PTR rates 
tend to result in higher customer response.1  We hypothesize that this is primarily due to the use of high price 
ratios for these rates.  By filtering by rate type and the use of enabling technologies, as done in Figure 2. 
Impacts from Pricing Tests, by Rate Type 
 

                                                 
1 For the PTR rate, the effective critical peak price is calculated by adding the peak time rebate to the rate the customer 
normally pays during that time period (in the absence of the rebate). 
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, we can see a clearer picture emerge from the data.  The use of enabling technology appears to 
increase demand response to levels above pricing-only observations at the same price ratio.  
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Figure 1. Impacts from Residential Time-Varying Pricing Tests, Sorted from Lowest to Highest 
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Figure 2. Impacts from Pricing Tests, by Rate Type 
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Figure 3. Impacts from Pricing Tests by Rate Type and Use of Enabling Technologies 

Even after sorting the observations by rate type and the use of enabling technology, significant 
unexplained variation remains.  As hypothesized before, the range of results may be due to the variation in 
the peak-to-off-peak price ratio employed across the studies.  In order to examine this, we start by carrying 
out an exploratory data analysis by plotting demand response as a function of the price ratio.  The plots 
initially focus only on pricing treatments that were not accompanied by enabling technology.  These are then 
followed by plots that focus on pricing treatments that were also technology enabled.  As seen below in 
Figure 4, the 83 price-only treatments fall into a tight pattern. 
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Figure 4. Price-Only Treatments2 

The 68 treatments involving price and enabling technologies have a more diffuse pattern, but peak 
reductions still tend to increase with the peak-to-off-peak price ratio.  In addition, for a given price ratio, 
peak reductions for these technology enabled projects tend to be greater than exhibited by price-only 
treatments.   

                                                 
2 Data points from the Japan and PSE&G pricing studies are omitted because of extremely high price ratios. 
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Figure 5. Price + Enabling Technology Treatments3 
Methodology 

 
For each experimental treatment in the Arcturus database, we plot the all-in peak-to-off-peak price 

ratio against the corresponding peak reduction.  The exploratory data analysis leads us to estimate a simple 
regression model for the 151 experimental treatments that examines the effect of the price ratio and use of 
enabling technology on demand response.  Using a logarithmic specification, we model the amount of 
demand response, expressed as a percentage, as a function of the price ratio, with and without enabling 
technology. 

Logarithmic Model 

y = a + b*ln(price ratio) + c*ln(price ratio*tech) 

Where y = peak demand reduction percent 

In the above equation, “tech” is a binary variable which acquires a value of one when enabling 
technology is offered in conjunction with price. The most common types of enabling technologies offered 
with the pricing rates in our database are smart thermostats, in-home displays (IHDs), and energy orbs.   

 
Results 

 
When we fit the logarithmic model to the dataset of 151 observations, we estimate a coefficient of 

0.046 for the natural log of the price ratio and 0.058 for the natural log of the price ratio*tech variable.  Both 
variables are significant at the 0.001 level.  The results reveal that as the peak-to-off-peak price ratio 
increases, the peak reduction also increases.  In addition, the positive and significant relationship between 
peak reduction and the price*tech variable signifies that the use of enabling technology further boosts 
demand response.  The R squared value of 0.038 means that approximately 38% of the variation in the 
dependent variable (i.e. peak demand reduction) can be explained by the independent variables (i.e. the price 
ratio and price ratio*tech variables). 

Table 1. Regression Results 

                                                 
3 One data point from PSE&G is omitted because of its extremely high price ratio. 
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Coefficient
Ln(Price Ratio) 0.046 ***

0.012
Ln(Ratio_EnablingTech) 0.058 ***

0.008
Intercept 0.054

0.020

Adjusted R-Squared 0.380
F-Statistic 46.89
Observations 151

Standard errors are shown below the estimates
*** p ≤ 0.001
** p ≤ 0.01 
* p ≤ 0.05

Regression

 

The analysis yields two “arcs of price responsiveness” for pricing-only treatments and price-tech 
treatments.  These Arcs of Price Responsiveness can be used to make preliminary assessments about 
expected customer impacts from various time-varying rates.  For example, for a peak-to-off-peak price ratio 
of 5:1, the expected peak reductions for price-only and price-technology treatments are ~12.8% and ~22.1% 
respectively.  For a price ratio of 10:1, these reductions would increase to ~15.9% and ~29.3% respectively.  
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Figure 6. Arc of Price Responsiveness 

The graphical analysis in Figure 6 shows some of the 151 treatments yield either extremely high or 
extremely low impacts.  We have categorized treatments with extremely high impacts (~40% for pricing-
only treatments and ~50% for price-tech treatments) or extremely low impacts (~0%) as outliers.  There are a 
total of 12 outliers in the dataset.     
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Figure 7. Flagging the Outliers 

When we drop the outliers from the dataset and re-estimate our logarithmic model, the results 
improve.  Most notably, the Adjusted R-Squared value increases from 0.380 to 0.533. Therefore, over half of 
the variation in peak demand reductions can be explained by the price ratio and use of enabling technologies. 
 We estimate a coefficient of 0.045 for the natural log of the price ratio and 0.055 for the natural log of the 
price ratio*tech variable.  Both variables are significant at the 0.001 level.  Additionally, the standard errors 
for these variables are lower than before. 

As done earlier, the Arcs of Price Responsiveness (shown in Figure 8) can be used to make 
preliminary assessments about expected demand response from time-varying rates.  For a price ratio of 5:1, 
the expected peak reduction in price-only and price-tech experimental treatments is ~12.0% and ~20.9% 
respectively.  For a price ratio of 10:1, expected peak period reductions are ~15.1% and ~27.9% 
respectively.4  The preliminary results with the 5:1 price ratio are very similar to the results from the 
California Statewide Pricing Pilot (SPP) in 2005; this study featured a CPP rate with a price ratio of 6.56 and 
resulted in a 13% peak reduction (Charles River Associates 2005). 
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4 By dropping the outliers from our dataset, our re-estimated arcs predict impacts that are lower than before.   
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Figure 8. Arc of Price Responsiveness (Excluding Outliers) 

Table 2. Regression Results after dropping Outliers 
Coefficient
Ln(Price Ratio) 0.045 ***

0.009
Ln(Ratio_EnablingTech) 0.055 ***

0.006
Intercept 0.049

0.015

Adjusted R-Squared 0.533
F-Statistic 79.62
Observations 139

Standard errors are shown below the estimates
*** p ≤ 0.001
** p ≤ 0.01 
* p ≤ 0.05

Regression

 
 

Comparison to Earlier Meta-Analysis of TOU Experiments 
 
It is useful to put the results of our analysis in historical perspective.  We have done this by 

comparing them to an earlier meta-analysis of TOU pricing experiments.  This was carried out in the early 
1980s by EPRI and managed by Ahmad Faruqui.  In this meta-analysis, data from the five best residential 
TOU experiments was combined and analyzed.  The research team of Douglas Caves and Lau Christensen 
estimated a CES model.  This yielded a variety of elasticities of substitution, one for the average household 
across all five experiments, an elasticity for households with all major electric appliances living in a hot 
climate, and an elasticity for households with no major electric appliances in a cool climate (D.W. Caves et. 
al.1984).  The elasticity of substitution for this meta-analysis captures a customer’s decision to shift usage 
from higher priced peak periods to lower priced off-peak periods.  In this instance, negative elasticities of 
substitution mean that customers will reduce peak period consumption in response to an increase in the price 
ratio.  

Using Brattle’s Price Impact Simulation Model (PRISM), which grew out of California’s Statewide 
Pricing Pilot, we have used these elasticities to simulate the impact of different price ratios on peak demand 
(Faruqui et. al. 2006).  The results are shown in Figure 9 below. 
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Figure 9. Meta-Analysis of 5 TOU Experiments 

And to put these results in perspective, the next figure shows our new Arc of Price Responsiveness 
for pricing-only treatments superimposed on the previous figure. The results are strikingly similar between 
the average household results from the early 1980s and the price-only result from the recent studies. 
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Figure 10. Price-Only Arc Superimposed 
Conclusion 
 

The amount of demand response increases as the peak to off-peak price ratio increases but at a 
diminishing rate.  When coupled with enabling technologies, price responsiveness increases even more.  Of 
course, there are many drivers of demand response besides the price ratio.  The length of the peak period, 
number of pricing periods, climate, and appliance ownership can all affect the average customer response 
during the peak period.  Additionally, the marketing of dynamic pricing rates has a tremendous impact on 
customer response, for customer awareness and education is critical to the success of time-varying pricing.  
Finally, the section of customers into time-varying rate experiments can affect the results of these studies.  
Because we were unable to control for these factors in this initial analysis, there are some outliers in our 
dataset which require further inspection.  Even then, the surprising amount of consistency in the results 
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shows that utilities and policymakers can be confident that dynamic pricing and time-of-use pricing will 
yield significant load reductions. 
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Appendix 
 

Summary Statistics on 33 Time-Varying Pricing Studies 
No. Experiment Location Year Rates Enabling Technologies

Number of 

Treatments
Season

Full Scale 

Rollout

Smart Grid Investment 

Grant (SGIG) Project

1 Ameren Missouri Missouri 2004, 2005 CPP CPP w/Tech 4 Summer No No

2 Anaheim Public Utilities (APU) California 2005 CPP Not tested 1 Summer No No

3 Automated Demand Response System (ADRS) California 2004, 2005 TOU, CPP TOU w/ Tech, VPP w/ tech 4 Summer No No

4 Baltimore Gas & Electric (BGE)* Maryland
2008, 2009, 2010, 

2011
CPP, PTR CPP w/ Tech, PTR w/ Tech 19 Summer No Yes

5 BC Hydro Ontario, Canada 2008 TOU, CPP Not tested 8 Winter No No

6
California Statewide Pricing Pilot (SPP--Pacific Gas 

& Electric, San Diego Gas & Electric, Southern 

California Edison)*

California 2003, 2004 TOU, CPP CPP w/ Tech 4 Summer No No

7 Commonwealth Edison (ComEd) Illinois 2010 TOU, CPP, PTR Not tested 3 Summer No No

8 Connecticut Light & Power (CL&P)* Connecticut 2009 TOU, CPP, PTR
TOU w/ Tech, CPP w/ Tech, 

PTR w/ Tech
18 Summer No No

9 Consumers Energy* Michigan 2010 CPP, PTR CPP w/ Tech 3 Summer No No

10 Country Energy Australia 2005 CPP CPP w/ Tech 1 All No No

11 GPU New Jersey 1997 TOU TOU w/ Tech 2 Summer No No

12 Gulf Power Florida 2000 TOU, CPP TOU w/ Tech, CPP w/ Tech 2 Summer No No

13 Hydro One Ontario, Canada 2007 TOU TOU w/ Tech 2 Summer No No

14 Hydro Ottawa Canada 2006 TOU, CPP, PTR Not tested 6 Summer No No

15 Idaho Power Idaho 2006 TOU, CPP Not tested 2 Summer No No

16 Integral Energy Australia 2007, 2008 CPP CPP w/ Tech 2 All No No

17 Irish Utilities** Ireland 2010 TOU TOU w/ Tech 16 All No No

18 Istad Nett AS Norway 2006 TOU Not tested 1 Winter No No

19 Marblehead Municipal Light Department Massachussets 2011 CPP Not tested 1 Summer No Yes

20 Mercury Energy New Zealand 2008 TOU Not tested 3 Winter No No

21 Newmarket  Hydro Ontario, Canada 2007 TOU, CPP CPP w/ Tech 2 All No No

22 Newmarket Tay Power Distribution Ontario, Canada 2009 TOU Not tested 1 All No No

23 Oklahoma Gas & Electric (OG&E) Oklahoma 2010 TOU, VPP TOU w/ Tech, VPP w/ Tech 14 Summer No Yes

24 Olympic Peninsula Project Washington 2007 CPP CPP w/ Tech 1 Summer No No

25 Pacific Gas & Electric (PG&E) California 2009, 2010 TOU, CPP Not tested 4 Summer Yes No

26 Pepco DC District of Columbia 2008, 2009 CPP, PTR CPP w/ Tech, PTR w/ Tech 4 Summer No Yes

27 Public Service Electric and Gas Company (PSE&G) New Jersey 2006, 2007 TOU, CPP TOU w/ Tech, CPP w/ Tech 8 Summer No No

28 Pudget Sound Energy Washington 2001 TOU Not tested 1 All Yes No

29 Sacramento Municipal Utility District (SMUD) California 2011 CPP CPP w/ Tech 2 Summer No Yes

30 Salt River Project Arizona 2008, 2009 TOU Not tested 2 Summer Yes No

31 San Diego Gas & Electric (SDG&E) California 2011 PTR PTR w/ Tech 2 Summer Yes No

32 Sioux Valley Energy (SVE) South Dakota 2011 CPP Not tested 4 Summer No Yes

33 Smart Community Pilot Project in Kitakyushu Japan 2012 VPP Not tested 4 Summer No No

*The Brattle Group  was involved in the evaluation of this experiment

**Run by the Commission for Energy Regulation (CER) Total 151  
 


