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New Approach to Analyzing Hourly Energy Usage Data  
to Obtain Fast, Accurate Savings Estimates 
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Lawrence Berkeley National Laboratory, Berkeley CA 

ABSTRACT	  
The paper demonstrates the use of hourly energy usage data to determine energy use 

changes in residential households in weeks rather than months or years.  This can be applied to 
the determination of gross energy efficiency program savings with reduced cost.  Particular 
applications could be in the area of program diagnostics (“Are savings occurring?”), program 
finance (“Are savings sufficient to achieve targeted energy bill reductions?”), or even overall 
program gross savings.  This work should stimulate further innovation in the use of hourly or 
higher resolution usage data. 

As automatic meter infrastructure (AMI) spreads, increasing the amounts of hourly usage 
data (AMI data) available. The variations in usage in hourly data embody the same factors that 
separate metering or data acquisition (e.g. surveys) illuminated when analysis was conducted 
with only monthly data.  AMI data may embody this information less perfectly than direct data 
acquisition, but the information it does contain comes is almost immediately available at no 
additional cost.   

This paper considers AMI data as basic time series and separates the noise in that series 
from evidence in a change in the pattern of usage using standard statistical techniques applied in 
a novel way.  By applying a moving time window, step-wise changes in energy use patterns can 
be sensitively detected in very noisy data.  This opens the possibility of being able to determine 
in a short time frame whether an energy efficiency action produced expected results rather than 
the one to two years now required. 

Once a change has been identified, straightforward ranking techniques may be able 
quantify the change to a high degree of accuracy.  In the case of non-weather dependent uses, 
this can be done with several weeks of data pre-change and post change.  More complex 
techniques can account for the impact of temperature changes. 

Introduction 
The increasing availability of facility-level energy usage data at hourly or greater 

frequency (high-resolution data) opens new possibilities for analyzing energy usage and energy 
efficiency savings.  Among the possibilities are developing new analytic approaches to address 
traditional questions, and developing new tools to analyze traditional or new issues.  The work in 
this paper adds to these to these two areas and illustrates the opportunities the availability of 
high-resolution usage data provides.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The authors may be reached at RDVanBuskirk@lbl.gov or WCMiller@lbl.gov respectively. 
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The opportunity posed by high-resolution data is timely as there is increasing interest in 
approaches to assessing energy efficiency savings that provide quicker, less costly but still 
usefully accurate answers.  This interest arises not only among the historic users of energy 
efficiency savings calculations (regulators, EE program providers and energy service industry 
participants), but others such as those pursuing energy management or upgrades on their own.   

The energy efficiency program industry can use faster (weeks rather than months or 
years) and accurate determination of energy use changes in residential households.  A key 
potential application for using available hourly data is the determination of gross energy 
efficiency program savings with reduced cost.  Particular applications could be in the area of 
program diagnostics (are savings occurring), program finance (are savings sufficient to achieve 
targeted energy bill reductions), what events are confounding clear determination of savings or 
even overall program gross savings. 

Historically determining “gross” energy efficiency savings used the monthly energy 
usage available.  Invariably, additional information was required because the information content 
of monthly energy usage is extremely aggregated.   For example, in a typical whole-house 
regression analysis, monthly energy usage, weather, appliance holdings, number of occupants 
and their characteristics, and behavioral patterns were used.  In some cases, additional 
information was obtained by separate metering activities.  For example, lighting “loggers” have 
been used to determine actual lighting schedules in commercial lighting retrofits.  Similarly, 
meters on air conditioning units to determine actual run times and KW used for commercial 
HVAC upgrades. 

Today increasing amounts of hourly usage data including from advanced meter 
infrastructure (AMI) are becoming available. The variations in usage observed in hourly usage 
data are the result of the same factors that separate metering or data acquisition was designed to 
determine.  While the AMI data embodies this information less perfectly than direct metering, 
what it does contain comes at no additional cost above obtaining the AMI data, and is available 
as rapidly as the AMI data is available. 

Characterizing the Energy Use Signal 
This paper explores the analysis of residential AMI data from a new analytical 

perspective in an attempt to increase its utility in estimating the impacts of efficiency measures 
or energy efficiency actions.  In this new perspective, household electricity use is treated as 
comprising of two relatively distinct components that are characterized by differences in time 
scale.  We define the short time scale signal as those energy use variations that consist of hourly, 
daily, and day of week fluctuations that respond to short-term behavior patterns of the household 
occupants.  In contrast to these short-time variations, the long-term signal is defined by a series 
of step-wise changes in occupancy, behavior or equipment. We wish to measure empirically the 
longer term, step-wise changes in energy use.  

A key difficulty of measuring the impact of any energy efficiency intervention comes 
from the challenge of measuring the impact of an efficiency measure amidst a background 
variation of idiosyncratic behavior.  Behavior and occupancy have very complex patterns, and 
create relatively large, short-time-scale energy use changes that create a large natural variability 
in household energy use.  
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In our new perspective, most or all of the long term energy use changes in a household 
are occurring as step-wise changes: both the energy efficiency intervention and the long term 
component of the background variation are assumed to go through a distinct change at a 
particular point in time.2  These step-wise changes may occur due to either equipment, or 
changes in occupancy or behavior (e.g. someone changes job location and commuting schedule, 
or adds a morning run to their daily routine).  The approach is to measure the energy use changes 
for ALL major step-wise changes in energy use with good accuracy, and then focus on the 
efficiency impact measurement problem of interest. This is because if we have accurate 
measurement of all of the major energy use changes in a household, then the problem of 
identifying the energy efficiency measure impact reduces to a problem of identifying which of 
the several observed step-wise changes in energy use corresponds to the intervention of interest.  

In this paper we demonstrate this measurement technique for example data. We begin the 
demonstration by initially describing some illustrative examples of how with a relatively short 
time series of hourly data it is possible to accurately measure step-wise changes in energy use.   
We follow the illustrative examples with a demonstration of how moving window averages can 
be used to detect step-wise energy use changes in noisy data.  In the first part of the 
demonstration we show the application technique with a simple data model, and then we apply 
the technique to a more realistic, longer-term data series.  We then illustrate the calculation of 
on-peak vs. off-peak energy use changes by comparing pre-change and post-change load 
frequency distributions.  We conclude with a summary and discussion of next steps.  

An Illustrative Example 
In this section we illustrate how step-wise changes in energy use can be identified in 

hourly energy use data.  

Figure 1 shows an example hourly residential electricity use data taken from the publicly 
available data from the End-use Load and Consumer Assessment Program (ELCAP). [1] We 
initially illustrate AMI data analysis methods with historical ELCAP data because it is a 
standard, publicly available data set of hourly data raising minimal issues with respect to privacy 
and confidentiality. ELCAP data has some differences with more current smart meter data in at 
least two aspects: First, it represents an area of the country where customers have relatively large 
electrical loads that usually includes the use electric resistance heating.  Secondly, the 
measurement resolution of the load data is an order of magnitude lower that typical modern AMI 
data (~100 watts compared to 10 watts).  

We can see if figure 1 a clear example of a step-wise change in energy use behavior in 
the context of very noisy hourly variations.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Note	  that	  a	  continuous	  trend	  in	  energy	  use	  can	  often	  be	  approximated	  as	  a	  series	  of	  step-‐wise	  changes,	  so	  that	  
the	  assumption	  of	  step-‐wise	  energy	  use	  changes	  at	  a	  distinct	  point	  in	  time	  may	  not	  be	  much	  of	  a	  restriction.	  	  
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Figure	  1:	  Example	  hourly	  data	  illustrating	  a	  pre-‐	  vs.	  post-‐	  changes	  in	  electricity	  use.	  	  	  	  
	  

How	  precisely	  can	  load	  changes	  be	  measured?	  
We now discuss what happens when a change occurs that is substantially smaller than the 

change illustrated in figure 1.  In the figure 1 example, previous to the transition the standard 
deviation of the natural log of the energy use is 0.69, with 473 data points indicating a standard 
error of measurement of the mean natural log of energy use is 0.69/(473)1/2 = 3%.  This 
represents a pre-transition measurement error of 36 watts out of a median load of approximately 
1200 watts.  After the transition, the 800 data points have a standard deviation of the natural log 
of 0.51, indicating a standard error of 0.51/(800)1/2 = 2% of 2500 watts or an error of about 50 
watts. We can safely say that the event that occurred on the morning of October 8 resulted in an 
increase of electricity use of approximately 1300 watts.  

In a state like California, average electricity use rates are approximately 15 kWh/day, 
substantially less than those in the households in the ELCAP study. [2] Assuming that the 
variance of the log of electricity use scale proportional to the use rate and that the averaging 
period is three weeks or more, it should be possible to measure step-wise transitions in energy 
use in Californian households to a standard error of less than 20 watts. 

Example: A Step-wise change in load  
Next, we illustrate how relatively small step-wise changes in energy use--while perhaps 

not evident by looking directly at time series data--can be very clearly seen by plotting load 
duration curves for pre- and post-change hourly data.  To construct the illustration we simulate3 
three-week pre- and post-change load comparisons.  Specifically we take a log normally 
distributed baseline load of mean 15 kWh/(24 hours) and a standard deviation of the log of 0.3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  We	  illustrate	  the	  concepts	  with	  simulated	  data	  to	  avoid	  privacy	  confidentiality	  costs/complications	  inherent	  in	  
using	  AMI	  data	  from	  actual	  customers.	  

0.25

0.5

1

2

4

8

16

20-‐Sep 30-‐Sep 10-‐Oct 20-‐Oct 30-‐Oct 9-‐Nov

En
er
gy
	  U
se
	  (k

W
)



	  

2013 International Energy Program Evaluation Conference, Chicago  
	  

and add an incremental load of mean 90 watts and standard deviation 20 watts.   Figure 2 
illustrates the three-week load duration curves for two simulated loads with and without the 
incremental load. 

	  
Figure	  2:	  Pre-‐base-‐load-‐removal	  (red)	  and	  post-‐base-‐load-‐removal	  (blue)	  load	  duration	  curves.	  	  
	  

What this particular example illustrates is that if one has pre-transition and post-transition 
periods clearly defined with fairly consistent average behavior in each of the pre-transition and 
post-transition periods, then it may be possible to create a clear measurement of the energy use 
differences even when the incremental load is relatively small.   This example also illustrates that 
comparison of pre-transition and post-transition load duration curves may be an effective 
technique for measuring the energy use change at the transition. 

Systematic Detection of Step-wise Changes in AMI Data 
In this section, we illustrate a method that can be used for the systematic detection of 

step-wise changes in AMI data through the use of running-window calculations of average 
energy use differences.  

Simplified Statistical Model of Data 

We start our demonstration of the change detection method with a simplified statistical 
model of the AMI data.  In this simplified model we assume that the AMI data consists of 
serially correlated, log-normally distributed random noise and generate synthetic data using a 
random number generator.  
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Figure	  3:	  Synthetic	  energy	  use	  data	  generated	  from	  a	  statistical	  simulation	  model.	  	  
	  

Figure 3 illustrates the synthetic data generated by the statistical model described above, where 
the statistical properties of the data correspond to the annual average statistical properties of AMI 
data from a residential household.   

Calculation of Step-wise Change in Energy Use 

We now illustrate with the synthetic data how to perform a detection calculation for a 
step-wise change in energy use.  To synthesize a step-wise change in energy use, we add to our 
synthetic data after a particular date (specifically 6/30/12) a constant energy use change, and try 
to detect the change in the synthetic data as illustrated in Figure 4. 

	  
Figure 4: Moving window average detection of 0.10 kW change in energy use at 6/30 in 
synthetic data for a window size of 4 weeks.  

The calculation that we use to measure energy use change in the synthetic data is a 
comparison between a forward and backward moving window average.  To make this 
comparison, we calculate for each date, the average energy use 4 weeks ahead of the date, and 
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the average energy use 4 weeks behind the date.   When we reach a step-wise change in energy 
use, there should be a peak in this moving window difference of forward and backward averages 
that equals the size of the energy use step.  This is exactly what we see in the calculation on 
synthetic data shown in Figure 4.  

Figure 5 shows a recalculation of figure 4 with a range of window sizes.  Note that the 
random numbers used in figure 5 are different than those in figure 4, so that pattern of noise is 
different.  What we see in figure 5 is that as we change the size of the computational window, 
that the peak in the calculation of the moving window average difference is very stable at the 
transition date 6/30.  Also while there is some error in the estimate of the energy use difference 
for small window sizes, as the window size gets larger, the error in the estimate of the energy use 
difference (i.e. the deviation of value at 6/30 from the actual step size of 0.1 kW) gets very small 
with increasing window size (and appears to be just a few watts). 	  

	  
Figure	  5:	  Moving	  window	  average	  detection	  of	  0.10	  kW	  change	  in	  energy	  use	  at	  6/30	  in	  
synthetic	  data	  for	  a	  window	  sizes	  ranging	  from	  1	  week	  to	  12	  weeks.	  	  

Application to Real-world Data 
In this section we illustrate the application of the change-detection calculation from the 

previous section to an example of real world data.  Figure 6 shows the average difference 
between a forward window average and a backward window average for different moving 
window sizes for approximately 100 weeks of hourly residential load data.  
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Figure	  6:	  Moving	  window	  average	  energy	  use	  change	  for	  an	  example	  household	  from	  the	  ELCAP	  
dataset.	  	  Window	  size	  for	  averaging	  varies	  from	  one	  week	  (blue	  curve)	  to	  four	  weeks	  (purple	  
curve).	  

As we can see from figure 6, we can detect several different energy use changes 
occurring on different time scales. We can see very large changes in energy use week to week 
that probably correspond to the use of electric resistance heating more or less intensely during 
the winter.   During the interim spring and summer months, there are more infrequent and 
usually smaller changes in energy use that probably correspond to changes in occupancy and 
changing various miscellaneous pieces of equipment that are in use. 

We use figure 6 to develop a simple step-wise energy use change model for the AMI 
data.  Specifically we examine each peak in the plot and determine the time and magnitude of 33 
distinct energy use changes that range in magnitude from 0.3 to 2.3 kW.   We illustrate the 
results of this model determination in figure 7.   

The upper plot in figure 7 illustrates the cumulative energy use change represented by the 
23 distinct changes detected in figure 6.   Increases are likely caused by the moving in of more 
energy-intensive renters, the adoption of electric resistance heaters during the winter, or 
temporary changes in occupancy.  Energy use reductions are caused by the removal of electric 
heaters, renters moving out or temporary changed in occupancy.    The lower plot in figure 7 
replicates the calculation in figure 6 for the noiseless step-wise energy use model shown in the 
upper portion of figure 7.   The general pattern of figure 6 is replicated though the qualitative 
nature of the plot including the small-scale statistical fluctuations and smoothing of the energy 
change peaks is not seen.  

But even though the simple step-wide energy use change model provides some general 
similarity to the empirical curves shown in figure 6, there are some distinct qualitative 
differences in the shapes of the different energy use change peaks that we would like to explore 
further.  

 

-‐1.5

-‐1

-‐0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90

M
ov

in
g	  W

in
do

w
	  A
ve
ra
ge
	  

Di
ff
er
en

ce
	  (k
W
)

Week	  Number 1	  week 2	  weeks
3	  weeks 4	  weeks



	  

2013 International Energy Program Evaluation Conference, Chicago  
	  

	  

	  

	  
Figure 7: Step-wise change model of long-term energy use variations.  The upper plot shows the 
cumulative step-wise energy use changes detected in figure 6, and the lower plot shows the 
moving window calculation of the average difference on the cumulative energy use difference. 

While the procedures above demonstrate how changes in long-term energy use can be 
identified, we confirm their efficacy by the following experiment.  The simple step-wise energy 
use change model developed above is modified by adding a noise term to the signal.  If this 
doesn’t conceal the long-term signal changes, then the method that isolated these changes has 
some evidence of robustness.  Accordingly, we add a noise term to the cumulative energy use 
change signal by adding a random number of between 0 and 2 kW.  The cumulative energy use 
plus noise term is shown in the upper graph in figure 8.    
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Figure 8: Step-wise change model of long-term energy use variations with noise added. The 
upper plot shows the cumulative step-wise energy use changes shown in figure 7 with a noise 
term (a random number between 0 and 2) added.  The lower plot shows the moving window 
calculation of the average difference on the cumulative energy use difference. 

The lower graph in figure 8 shows the result of a moving window difference in averages 
calculation for different moving window sizes.  The basic features of the figure 6 are replicated.  
Each of the major deviations from zero shown in figure 6 is also present in the lower graph of 
figure 8.  There is a noisy portion of the signal in both graphs with the smaller and higher 
frequency noise being smoothed to a greater extent with larger moving window sizes.   While 
some minor details of the two graphs differ (specifically some of the specified energy use change 
peaks are distinctly wider in the 1-week window calculation in figure 6), the general qualitative 
and quantitative similarity gives us confidence that the type of statistical model for detecting 
individual household energy use changes is useful. 	  
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Determination of Energy Use Difference Distribution Details 
Once the time and magnitude of energy use differences have been determined, it is fairly 

straightforward to characterize the distribution of energy use differences at the transition point. 
Note that in figure 2, when we plot two different load duration curves for an energy use 
transition (e.g. a dying server), this implies that we can calculate the energy change as a function 
of whether the load point is at peak load (i.e. percentile 0) or at base load (percentile 100%).   In 
figure 9 we illustrate this calculation for the week 17 and week 70 transitions seen in figure 6.   
 

To calculate the frequency distribution, we collect all of the data between the current and 
previous energy use change date, and calculated the corresponding energy use cumulative 
frequency distribution (as illustrated in figure 2).  We then calculate the difference in the 
cumulative distributions for the post vs. pre-transition periods to calculate the energy difference 
as a function of frequency.  
 
We see that for the week 17 transition, that the difference in energy use is concentrated at peak 
load, with only a small energy use change at base load.  This can occur if there is a change in 
occupancy that involves very little change in equipment.  
 

In contrast for the week 70 transition, there is an approximately constant difference in 
energy use. Because of the low resolution of the ELCAP data the curve is not smooth, but with 
higher resolution more current AMI data, such curves much smoother.   The combined impact is 
a nearly constant 100 watts of electricity use increase.  
	  

	  
Figure 9: Distribution of energy use change for two transitions found in figure 6.  The upper, red 
curve is the energy use change distribution for the week 70 change, and the lower blue curve is 
the distribution for the week 17 change.  
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Summary and Conclusion 
In this paper we have illustrated the possibility of using AMI data to quickly and 

accurately detect electricity use changes in an individual household. We have considered using 
AMI data as basic time series, where the data consists of a series of step-wise energy use changes 
plus noise.  

We applied a simple moving window calculation of average difference (between a 
forward window and a backward window) to detect points at which significant energy use 
changes occur.  This allows us to decompose the AMI signal into a series of step-wise changes 
plus high frequency noise.  

We then show how we can compare the load duration or load frequency functions before 
and after the detected energy use transitions to calculate the on peak vs. baseline distribution of 
energy use change.  

This new method holds the potential of allowing for a new, cheaper, more accurate and 
much more rapid method of energy efficiency program impact detection.  In this new method, 
AMI data would be decomposed into a series of step-wise energy use transitions, and then by 
mapping the time of an energy efficiency intervention and an observed energy use change, one 
can obtain a more precise and confident correlation between efficiency measure and household 
energy use at the individual household level.  The method also holds promise for examining 
changes in energy use not induced by an energy efficiency program which are among the factors 
typically confounding traditional energy savings calculation approaches. 
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