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ABSTRACT  

Energize Phoenix (EP) is a three year energy efficiency program conducted by a joint 

collaboration between the City of Phoenix, Arizona State University and a large electricity provider. 

The intent was to improve energy efficiency in residential, multi-family, commercial/industrial 

buildings located in a portion of the city of Phoenix around the light rail corridor. There are several 

facets to the EP program with engineering-based verification of the energy savings due to commercial 

buildings upgrades being one of them, and the focus of this paper. Various issues had to be addressed 

such as incomplete data, spurious data behavior, multiple upgrade projects in the same facility, weather 

normalization using well-accepted change point models applied to utility bill data, and baseline model 

uncertainty. Considering the nature and characteristics of utility bill data, the evaluation methodology 

initially adopted was labor intensive and involved a manual data screening procedure of projects on an 

individual basis and then one-by-one baseline modeling and savings assessment. An automated process 

was developed in order to reduce the labor required to analyze and update energy savings in hundreds 

of buildings on a periodic basis. This paper presents results of over 200 completed upgrade projects 

comparing measured savings with those predicted by the contractors prior to the upgrades. Reasons 

for these differences are discussed, and follow-up investigations into this discrepancy are also 

described. Preliminary savings uncertainty is also reported. This paper ends with conclusions and 

suggestions for further investigation needed to improve the accuracy and reliability of determining 

energy savings in allied large scale energy efficiency programs.  

Introduction 

 Energize Phoenix (EP) is a three year energy efficiency program led by a joint collaboration of 

three major institutions –the City of Phoenix, Arizona State University and Arizona Public Service 

(APS) – the state’s largest electricity provider. The main goal of the program was to improve the 

energy efficiency in the buildings located around the Phoenix light rail corridor and to create jobs. The 

participating buildings included residential, multi-family, commercial/industrial etc. The program is 

one of 41 from across the United States which are supported by the U.S Department of Energy’s Better 

Buildings Neighborhood Program and the American Recovery and Reinvestment Act of 2009 in order 

to test new models for scaling energy efficiency and to create jobs. Historically, energy efficiency 

programs have faced a trio of interconnected forces — technical, economic, and socio-behavioral — 

which continue to hinder mass-market scaling. Inter-disciplinary research underway for EP is aimed 

at understanding and helping resolve these barriers. Research projects cover numerous facets (such as 

behavioral and attitudinal differences between participating and non-participating homeowners and 

business owners, contractor marketing methods, the effects of energy feedback devices coupled with 

other education or budgeting information, spatio-temporal trends in participation rates, econometric 

modeling of savings, and economic impact analysis), all of which are meant to study the above 

influences and aimed at helping energy efficiency programs realize their full potential.  

 EP is a contractor-driven program in which participants receive incentives based upon the 

amount of kilowatt-hours estimated to be saved in the first year by the energy conservation measures 

installed. Thus, the prospective buildings were not chosen by us, instead, the task of initiating contact 
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and convincing customers to join the EP program was with the contractor. Incentives can range up to 

100% of incremental or project costs. This paper is narrowly focused in its scope on research work 

performed to better understand the accuracy of energy savings estimates in commercial building 

upgrades within the framework of the EP program.  

Objectives 

The primary objective of the EP commercial team was to analyze the data and to quantify the 

energy savings achieved in the commercial buildings which underwent upgrades incentivized by the 

EP program. These savings were then compared to the stipulated savings or savings predicted by the 

energy contractors during the project sales process. Note that the energy contractor estimated savings 

using either custom audits or prescriptive guidelines that rely on equipment count (such as lights).In 

addition, the “solutions for business” approach, meant for small businesses only, was based on standard 

software and other proprietary tools supplied by a 3rd party contractor. This comparison helps to assess 

the overall effectiveness of the upgrades and the accuracy of the savings estimates of the program as a 

whole. Other secondary issues were also investigated; for example, whether certain contractors tended 

to consistently over-estimate savings as compared to others, and reason for doing so.  

 There were hundreds of commercial buildings which underwent energy upgrades through the 

program. These projects varied vastly in characteristics like business type, size, etc. The monthly utility 

bill analysis approach was deemed to be the only realistic method to determine savings in a program 

this big with limited personnel involved in the measurement and verification (M&V) process. Further, 

since EP was an ongoing program and contractors often specialized in certain types of retrofits, 

buildings underwent upgrades on a continuing basis, and so savings calculations had to be redone at 

frequent intervals. We are sent utility bill data for all projects (old as well as recent) on a quarterly 

basis, and it was logical for us to recalculate and update the savings for all buildings every 3 months. 

This prompted us to define an additional objective, namely to simplify and automate the savings 

analysis methodology as far as possible so that future energy conservation programs similar to EP 

could reduce M&V analysis costs.  

Overall Approach 

Because of time constraints, the baseline electricity consumption prior to the implementation 

of energy upgrades could not be determined by in-situ measurement. Hence, the whole building 

analysis approach, which is one of the four general M&V approaches widely followed by the 

professional M&V community (see for example, ASHRAE Guideline 14, 2002 or IPMVP, 2010) was 

adopted. The approach involves relying on a whole year of utility bill data prior to the upgrade to 

establish a baseline model of energy use against monthly mean outdoor temperature. Such monthly 

utility bill data was made available from the APS customer billing database. The model is then applied 

to measured outdoor temperature during the post-upgrade period and the sum of the monthly 

differences between these model predictions and the actual measured utility bills during the post-

upgrade period constitutes the upgrade energy savings. The entire process is described in more detail 

in the Appendix. 

 Because of the error introduced in such a general approach (called Level 1 analysis) which 

does not involve inspecting the buildings individually, it was decided to conduct a limited number of 

in-depth analyses in buildings where large discrepancies were found between measured and contractor-

predicted savings. This approach (referred to as Level 2) would provide some degree of credibility in 

our speculation as to the observed differences, and allow us to correct the data as appropriate. Due to 

the large number of projects, our approach was to sample a sub-set of the completed upgrade projects 

and verify the savings estimated by the contractor through follow-up field visits, installing in-situ 

equipment and monitoring for a relatively short period of time. The degree of over- or under- prediction 

of the savings could then be determined more accurately, and the causes for any such discrepancies 
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identified. This would provide useful feedback to APS and to the contractor, and suggest ways by 

which future upgrade savings estimations can be improved.   

Finally, Level 3 involved an in-depth energy analysis of a few selected projects so as to evaluate 

energy savings and to provide recommendations for additional potential energy conservation 

measures. Level 3 analysis involved developing a calibrated detailed simulation model of the energy 

use in the building based on owner-provided architectural drawings, energy audit reports, usage data 

and project applications. This is consistent with another standard M&V approach described in such 

documents as ASHRAE Guideline 14 (2002) and IPMVP (2010). Sub-monitoring the energy use and 

indoor environment was also done to calibrate the model. The primary objective was to determine 

quantitatively the effect of individual energy efficiency upgrades on overall energy consumption and 

to identify other possible energy conservation measures (ECMs). Figure 1 depicts these three levels of 

analysis in a succinct manner. This paper primarily presents the results of our Level 1 analysis, with 

follow-up papers anticipated to report on the results of the other two levels. 

Methodology 

Data screening and binning  

The first step involved ascertaining consistency of energy use over the years. This was 

conveniently done by simply generating time series plots (see Figure 2) of historic utility bills, and 

looking at them visually. Some of the projects showed considerable variation in usage pattern which 

made it necessary to manually screen all individual projects for data quality. This also led to the 

decision of using only one year of data immediately prior to the upgrade as the baseline period since, 

as is well known, energy use patterns in commercial buildings tend to change over time. 

Levels of Analysis Approaches 

Savings Reassessment 

(Level 1) 
 

Limited Diagnostic Testing 

(Level 2) 

In-depth Energy Analysis 

(Level 3) 

 

 Data retrieval, 

screening and binning 

 Determining energy 

savings by direct 

month-to-month 

utility bill comparison 

 Determining actual 

energy savings by 

weather corrected 

analysis 

 Comparing contractor 

predicted savings 

with actual savings 

 Identifying projects 

with large 

discrepancy  

 Follow up surveys 

and field visits 

 Installing data 

monitoring devices to 

isolate energy use 

component 

 Determining the 

savings and 

identifying reason for 

discrepancy 

 Identifying specific 

projects for analysis. 

 Creating detailed 

building energy 

simulation models 

using available 

drawings, energy 

audit reports etc. 

 Performing on-site 

measurements as 

necessary. 

 Studying the effect of 

specific energy 

retrofits including 

HVAC and other 

alterations 

Figure 1.The three levels of analysis 
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 The data visualization step allowed identification of anomalous behavior and grouping of 

buildings into bins, as illustrated in Figure 3. Bin A consisted of buildings where there were missing 

or inadequate pre-upgrade data (i.e., less than twelve utility bills). Buildings with abnormal data 

patterns were placed in Bin B. Three of the common generic cases encountered are illustrated in Figure 

3.Some buildings exhibited an increase in energy use after the upgrade, some had abnormal spikes, 

and others had markedly different seasonal variation patterns. Bin C consisted of buildings which did 

not have at least six months of post-upgrade data, in which case the calculation of energy savings was 

deferred until more utility bill data was forthcoming.  Finally, those buildings which did not fall in any 

of the above three bins, were placed in Bin D for which the savings were determined. Additional 

manual screening criteria for data quality had to be empirically framed as shown in Table 1. For 

example, if predicted savings were less than 1% of the energy use, our analysis procedure was deemed 

to be unsuitable. An example of anomalous behavior which warranted placing a project in Bin B was 

a case in which the audit estimated savings exceeded the total energy use of the building. This 

screening process made the whole analysis labor intensive, but it needed to be done only once per 

project.  

 Since there were several buildings which fell into Bin B, phone calls to the facility managers 

or owners of several of these buildings were also undertaken in order to identify possible reasons and 

to reconcile the odd behavior. If the behavior could be explained convincingly, these buildings were 

moved to Bin D, otherwise they were moved to Bin A. A possible factor causing some of the 

anomalous behavior could be attributed to the fact that we were unable to perform account matching 

with the master meter of the facility. Such data was not made available to us due to privacy reasons. 

 

 Table1. Data screening and binning criteria employed for screening 

Bin A 

(Excluded projects) 

Bin B 

(Projects requiring further 

analysis) 

Bin C 

(Projects 

awaiting more 

data) 

Bin D 

(Projects which 

analysis were 

done) 

1) When savings estimated 

are less than 1% of the 

pre retrofit utility 

consumption 

2) Less than twelve months 

of pre-retrofit data 

available 
3) Observed discrepancy in 

time series data could not 

be resolved 

1) Unexplained increase in the 

pre or post retrofit 

consumption 

2) Contractor claimed savings 

are greater than 100 % of 

energy use 

3) The post retrofit energy use 

has gone up 

4) Pre and Post retrofit 

patterns are different  

Less than 6 

months of post 

retrofit data 
  

  
  

If the project 

does not fall in 

any of the other 

categories 
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Figure 2. Time series plot of monthly utility data for over three years before the upgrade and one year 

after upgrade for a specific EP building 



2013 International Energy Program Evaluation Conference, Chicago  

Automation of savings calculation 

Savings were estimated by comparing the energy consumption between corresponding months 

of pre and post upgrade periods. The billing cycle was assumed to match calendar months due to lack 

of meter read dates, which introduces some error in our analysis. A large number of projects showed 

weather dependency where the total energy consumption was influenced by cooling and heating loads 

of the building. Thus, the influence of the weather had to be taken into account for these projects in 

order to properly estimate the upgrade savings. 

  

 There were several buildings which qualified for EP incentives involving multiple energy 

upgrades. These were treated as single projects using the simple approach illustrated in Figure 4. The 

data period in between the first and the last upgrades was simply excluded from the analysis since in 

most cases these multiple upgrades were done within a few months of each other. All the upgrades 

were treated as one single upgrade with the post upgrade period assumed to start after the last upgrade 

was completed. The sum total of all the contractors’ savings estimates for the building was taken to be 

the overall predicted savings.  

 As the number of projects increased and since savings had to be recalculated at quarterly 

intervals as more data was forthcoming, it was critical to automate the process as much as possible. 

The automation scheme which evolved is shown in Figure 5. Note that there are still two steps which 

require manual screening. 

Figure 4. A hypothetical building showing multiple retrofit projects. Energy savings were simply 

determined using pre retrofit and post retrofit periods as shown. 

Figure 3.  Illustrative examples of abnormal data. The data screening behavior pertinent to Bin A 

and Bin B were identified during the process. 
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 To facilitate the manual screening in the automation process, a visual template (shown in 

Figure 6) was developed. This involved generating scatter plots of energy use versus outdoor 

temperature and annual time series plots superimposed on each other. 

The methodology for developing the baseline model is described in the Appendix. It is 

consistent with the modeling procedures advocated in the engineering literature involving identifying 

the best change point regression model among several different model formulations with outdoor 

temperature as the independent variable. A FORTRAN program was developed specifically for the 

purpose of the EP commercial building analysis effort which incorporated the widely used Inverse 

Modeling Toolkit (IMT) computer code (Kissock, Haberl and Claridge 2002) as a subroutine. The 

program reads the utility bill data for a specific building along with outdoor temperature, and assigns 

it to the pertinent bin. If the building falls into Bin D, the program then identifies the best change point 

Buildings with at least 
six months of post 

retrofit data  

Individual Project 

Visualization 

Template (Fig.6) 

Savings estimate by 
weather corrected 
model analysis. 

 

Results and Visualization Template 
 

Multiple 
Projects per 

building 

 

Single 
Projects per 

building 

 

Automated 

Screening 

 

Primary Database 

(Updated periodically) 

Building Description 

Table 
Billing Data Table Monthly 

Temperature Table 

Automated Screening 

Projects with bad baseline data and 
insufficient post retrofit data 

(Bin A & Bin C) 
 

Single projects with at 
least six months of 
post retrofit data 

 

Manual Screening 
 

Abnormal Data 

(Bin B) 

Proper Data (Bin D) 
 

Telephone follow-
ups and further 

analysis 
 

Unresolved Data 
 

Resolved Data 
 

Automated Savings 

Determination 

 

Savings estimate by 

direct monthly utility 
bill comparison 

 

Automated Screening 

 

Manual Screening 

 

Abnormal Data 
(Bin B)  

 

Proper Data (Bin D) 
 

Figure 5. Flowchart of the automated routine developed to determine energy savings from 

numerous retrofitted buildings in the framework of EP program 
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model among several possible functional forms, calculates savings for that building, and does this for 

all the buildings in the database. The total savings are then determined along with the contractor 

estimated savings. Finally, the automated routine generates pertinent summary statistics and graphics 

of the entire program savings. 

Analysis Results 

 As of March 2013, 557 retrofit projects were completed. The distribution of the adopted energy 

conservation measures (ECM) is shown in the Figure 7 .Of all the projects, 141 projects fell into Bin 

D (Table 2). The energy savings determined are summarized in Table 2 and also plotted in Figure 8. 

Note that: 

(i) There is a major discrepancy between the total savings predicted by the contractors and 

those determined from our weather normalized savings calculation often referred to as 

“measured” savings in the M&V literature. While the former is found to be 8.1% of the 

baseline energy use, the ‘measured’ savings fraction was 5.2%, a significant difference. 

(ii) There is a large difference between weather normalized savings and those savings 

determined by direct pre-post utility bill comparison (5.2% versus 3.2%). The 

difference in outdoor temperatures between the years 2010 and 2011 was not large, but 

that between 2011 and 2012 was significant and could explain this difference. 

(iii) Figure 9 shows the measured savings percentage (i.e. energy savings divided by 

baseline energy use) on an annual basis for all individual projects along with the 

associated fractional uncertainty (i.e. energy savings uncertainty divided by energy 

savings). The uncertainties of the change point models, characterized by their 

coefficient of variation – root mean squared error (CV-RMSE), are generally large. 

However, the baseline model is used to predict energy use each month for the 12 months 

of the year and so the uncertainty of the summed values are lower. The relevant 

formulae are given in various publications (Reddy and Claridge, 2000 or ASHRAE 14, 

2002). A follow up paper will report uncertainty in more detail as well as on the whole 

portfolio of buildings of the EP program. 

 

Table 2. Summary of analyzed commercial projects 

 

 

 

 

Number of Completed Projects ( As on 3/30/2013)   557 

Sum of contractor estimated annual energy savings (kWh) 
45.2 x 106  

Total floor area of all completed projects (sq. ft.) 20.4 x 106 

Number of projects in Bin A 6 

Number of projects in Bin B 73 

Number of projects in Bin C 315 

Number of projects in Bin D 141 

Figure 6.Plots from the visualization template meant as an aid to perform manual screening of data 
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Follow-up Investigations 

Estimated and measured savings distributions 

Possible causes for the discrepancy stated under (i) above were investigated. Figure 10 is a plot 

of the distributions in annual energy savings fraction for the 141 projects estimated by the contractors 

and those determined by the weather normalized approach. The estimated savings fraction have a 

noticeable wide distribution across the various projects, exhibiting a long positive tail. On the other 

hand, the measured savings have a tighter distribution, and peak around 9% savings. However, many 

of the projects show negative savings which is probably the reason why the total “measured” energy 

savings fraction turns out to be only around 5%. A possible reason for this discrepancy could be due 

to bias that has been introduced in our analysis due to the visual manner by which buildings are sorted 

to the various bins described above. We repeated the savings analysis without such a binning for 220 

Figure 8. Energy savings in 141 retrofit projects estimated by different methods. 
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projects (which had complete baseline data and more than six months of post retrofit data) and found 

that the measured savings fraction varied very little (from 5.2% to 4.9 %) while the contractor predicted 

savings showed a larger increase (from 8.1% to 9.6%). Thus, our analysis procedure does not seem to 

introduce any bias. This preliminary result is an important one since it could reduce /eliminate much 

of the effort expended in the manual screening process in future energy conservation programs. 

Possible causes of differences 

In an effort to isolate the cause for the discrepancy between contractor predicted and 

“measured” savings, lighting-only upgrade projects were studied because they were simpler to analyze. 

Figure 11 provides a direct comparison of the estimated and measured savings percentages. While the 

former is close to 8%, the latter is close to 4%, a 50% discrepancy, which reflects our analysis results 

for the larger data set as well. The root causes for this discrepancy are discussed below. 

 In the case of a lighting project, the contractor-predicted savings were calculated as the kW 

reduction multiplied by the number of hours of operation. The kW reduction appears fairly 

straightforward since it entails counting the number of fixtures and using engineering formulae to 

account for ballast and other effects. The number of hours, on the other hand, is an estimate, often 

supplied by the building owner. A study is ongoing to investigate this source of error using data loggers 

at several facilities. The results of this study will be reported in a subsequent paper.  

 A second potential source of estimation error would arise from inaccurate assessment of pre-

upgrade equipment conditions. Field measurements on one project determined that, while the owner 

and/or contractor had assumed that all existing ballasts consisted of older, inefficient magnetic 

technology, at least some of the ballasts had been replaced with newer electronic versions during 

regular maintenance as ballasts had burned out. While a 100% pre-upgrade audit is not a cost-effective 

solution, appropriate sampling could improve outcomes. 

 Another cause for savings discrepancies could be due to the quality of the utility bill data itself 

and how it was designated in the database. A field visit was made to another facility where estimated 

savings were over 100% of the baseline energy use, and it was found that the utility bills provided 

were only from one electric meter while the facility had four electric meters. Such discrepancies would 

greatly skew any analysis results, and so procedures must be put in place to ensure proper quality 

control in future energy conservation programs. Yet another reason for this discrepancy could be due 

to both snap back effect and due to energy creep (gradual increase in installed plug loads) in a facility 

after the retrofits were completed. This issue is also under investigation and will be reported in a 

subsequent paper. 

Figure 10. Comparison of frequency distribution 

of annual savings as a percentage of baseline 

consumption. Data is from 141 projects with 

weather correction. 
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Contractor bias in savings estimation  

Another investigation involved determining whether certain contractors tended to consistently 

over-estimate energy savings. While there were 24 different contractors in total, there were nine who 

undertook numerous projects or projects with large energy savings. The results of this study are 

summarized in Figure 12. Notice, for example, that contractor #2 and #5 performed 34 and 36 projects 

respectively, and consistently over-estimated savings to a large degree. The ratios of measured savings 

to predicted savings for the 34 individual projects attributed to contractor #2 are shown in Figure 13. 

The causes of this result are also being investigated. 

 

 

  

 

 

 

 

 

 

Summary and Suggestions for Future Projects 

In summary, the major conclusion of the EP commercial analysis effort is that while contractor 

estimated savings fraction were around 8% of the baseline energy use for the entire program till March 

2013, the measured savings fraction were only 5% (as of February 2013). Though these numbers may 

change as additional buildings are analyzed, this trend merits further investigation. If energy efficiency 

programs are to be scaled substantially, large portfolio financing is one logical path to reach scale. 

Financing sources need predictable returns in order to invest without requirements for the high risk 

premiums warranted by uncertainty. We have suggested possible means of reconciling estimated 

versus actual performance, either by installing data loggers or by field visit surveys. The proliferation 

of interval data from smart meters also opens up new possibilities for increasing estimation accuracy 

at the individual building level and through analysis of “Big Data” at the program level. We have also 

found that contractor bias accounts for some, if not much of the observed differences in savings. One 

suggestion is that contractors be provided with utility bills of the facility at the time of estimating 

savings since it would eliminate the very high estimated savings fractions found during our analysis. 

We would also advice that each and every building data be screened in order to identify and remove 

spurious data spikes and patterns even though we have reported in this paper that the difference seems 

to be small at the program level if such individual screening is not done. Further, this study suggests 

that it is imperative to perform weather normalization in order to predict savings in a more realistic 

manner. Finally, we conclude that change point models used for weather normalization generally have 

relative uncertainties lower than the savings themselves at the individual building level though this is 

not true for certain number of buildings. The uncertainty would still be even lower at the portfolio 

level, and this aspect will be reported in a subsequent paper. 

Figure 12. Performance comparison for nine 

contractors. The number of projects are indicated in 

the graph. 
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Appendix:  Baseline Model Development and Uncertainty 

The savings methodology adopted is consistent with the one suggested in the professional 

literature (see for example, Haberl and Culp 2007).The process includes the following steps: 

1. Acquire monthly energy use data (from utility bills) and data on influential variables (limited 

in this study to outdoor dry-bulb temperature) during the pre-upgrade period. 

2. Develop a regression model of pre- upgrade energy use as a function of influential variables- 

this is the “baseline model”. 

3. Acquire date of energy use (from utility bills) and influential variables during post upgrade 

period. 

4. Use the values of influential variables from the post upgrade period (from step 3) in the pre 

upgrade model (from step 2) to predict how much energy the building would have consumed 

on a monthly if it had not been upgraded.  

5. Subtract measured post upgrade energy use (step 3) from the predicted pre-upgrade energy 

use (step 4) to estimate savings on a monthly basis. 

6. Sum the individual monthly savings to determine cumulative (or annual) savings and 

percentage savings. 

7. Compare the model goodness-of-fit (using the coefficient of variation of the root mean 

square error or CV-RMSE) with the percentage savings determined. 

The model approach is statistical in nature, involving identifying a regression model of monthly 

energy use against monthly mean outdoor temperature using the monthly mean temperature model 

(Kissock, Reddy and Claridge 1998). The ambient temperature is chosen as the only independent 

variable because of the easy availability of the data, the difficulty in acquiring other data, and to avoid 

statistical difficulty arising from a small data set (only 12 data points) and multi-collinearity with 

environmental indices such as ambient humidity and solar radiation. 

Another significant parameter to be considered is the uncertainty in the baseline model for a 

specific site characterized by the CV-RMSE (coefficient of variation of the root mean square error) of 

the model. This allows direct insights into the statistical soundness of the associated savings deduced. 

The CV-RMSE is a rough measure of the fractional (or percentage) uncertainty in the baseline model 
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compared to the mean baseline energy use. A 10% CV-RMSE would imply that model uncertainty is 

10% of the mean annual pre-upgrade energy use. If the savings fraction is less than the CV-RMSE 

then one is unjustified statistically in placing too much confidence in the associated savings estimated 

at that site. Adding this filter criterion to the analysis would have further reduced the total number 

eligible projects within the EP program. So for a single project all models were evaluated as shown in 

Figure A1, and the model with the least CV-RMSE was chosen as the best fit baseline model.  
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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government.  Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 

or represents that its use would not infringe privately owned rights.  Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does 

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 

Government or any agency thereof.  The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the United States Government or any agency thereof. 

Figure A1. Process of determining the best fit regression model for a specific project involves fitting 

all forms of change point models and identifying the one with the least root mean square error 

(RMSE) 


