Is it Still Cost Effective to Promote Light Bulbs? Should We?

Seth Craigo-Snell, Director of Research, Applied Proactive Technologies, Inc.

Simply stated, program sponsors and regulators are unsure whether residential lighting programs should continue to promote CFLs given the change in standards brought about by the Energy Independence and Security Act of 2007 (EISA). Similarly, sponsors and regulators need to know if and when LED bulbs should be promoted. In this poster, we present an argument for the continued promotion of CFLs at least until 2020 and look also at the cost effectiveness of promoting LEDs over the same period and recommend targeted promotions for both.

In response to the EISA legislation, manufacturers have developed a new line of EISA compliant halogen (EC halogen) bulbs that are engineered to meet the EISA standards in each light output range (e.g. 72 watt EC halogen at 1490 lumens). These EC halogen bulbs, already available in the U.S. market, are the next generation baseline product for general purpose replacement lamps. A second tier standard was mandated by the EISA legislation to go into effect January 1, 2020 which requires that all general purpose lamps manufactured or imported into the U.S. market meet an efficacy of 45 lumens per watt.

U.S. lamp manufacturers anticipate EISA compliant halogen bulbs will gain significant market position beginning in 2015, and will quickly become the technology of choice for residential customers after the precipitous drop in incandescent bulb sales following the full phase in of the first tier EISA standards. Price estimates forecast a substantial drop in the prices of LED products (directional and omni-directional) reaching, on average, approximately \$10/bulb for reflector LEDs and \$5/bulb for A-Line LEDs by 2020. Standard incandescent bulbs are expected to hold steady at a very low cost per bulb while CFLs and EISA compliant halogen bulbs decrease steadily, but slowly. Based on this information from U.S. lamp manufacturers and the research of other in the EE industry (York, et. al., 2013; D&R, 2012; NEEP, 2012; EPA, 2011), EISA will not transform the residential lighting market on its own for many years to come.

PARAMETER	VALUE
Ave. Daily Operating Hours:	2.3 hrs/day
Rated Life of CFL:	10,000 hrs
Rated Life of LED:	25,000 hrs
Rated Life of Standard Incandescent/EISA Compliant Halogen:	1,000 hrs
CFL Ultimate Installation Rate (KEMA, 2010; p. 127, Table 77):	0.973
LED Ultimate Installation Rate:	1.000

Table 2: Baseline Product Wattage Assumptions by Light Output (EPA, 2)
--

	Light Output (lumens)					
Year	0-309	310-749	750-1049	1050-1489	1490-2600	
2011 (pre-EISA)	25	39	59	73	97	
2012	25	39	58	72	90	
2013	25	37	55	64	80	
2014	25	33	49	58	76	
2015	25	33	49	58	76	
2016	25	33	49	58	76	
2017	25	33	49	58	76	
2018	25	33	49	58	76	
2019	25	33	49	58	76	
2020 & after	25	12	20	28	45	

	N.	NTG				
Year	CFL	LED				
2012	0.70	0.90				
2013	0.67	0.86				
2014	0.65	0.83				
2015	0.62	0.80				
2016	0.59	0.76				
2017	0.57	0.73				
2018	0.55	0.70				
2019	0.53	0.68				
2020	0.50	0.65				

Table 3: Net-to-Gross Ratios

Table 4: Financial Estimates (Hornby, et. al., 2011)

Discount Rate:	3.5%			
T&D Losses:	7.0%			
Year	Avoided Cost (\$/kWh)			
2012	0.070615			
2013	0.070968			
2014	0.071323			
2015	0.071680			
2016	0.072038			
2017	0.072398			
2018	0.072760			
2019	0.073124			

Table 5: Promotional Costs

	CFL			LED-Reflector			LED-ALine		
Year	Incent	Admin	Total	Incent	Admin	Total	Incent	Admin	Total
2012	\$1.35	\$0.517	\$1.87	\$10.00	\$0.517	\$10.52	\$10.00	\$0.517	\$10.52
2013	\$1.35	\$0.517	\$1.87	\$10.00	\$0.517	\$10.52	\$8.00	\$0.517	\$8.52
2014	\$1.35	\$0.517	\$1.87	\$8.00	\$0.517	\$8.52	\$6.00	\$0.517	\$6.52
2015	\$1.35	\$0.517	\$1.87	\$7.00	\$0.517	\$7.52	\$5.00	\$0.517	\$5.52
2016	\$1.35	\$0.517	\$1.87	\$7.00	\$0.517	\$7.52	\$5.00	\$0.517	\$5.52
2017	\$1.35	\$0.517	\$1.87	\$6.00	\$0.517	\$6.52	\$5.00	\$0.517	\$5.52
2018	\$1.35	\$0.517	\$1.87	\$6.00	\$0.517	\$6.52	\$4.00	\$0.517	\$4.52
2019	\$1.35	\$0.517	\$1.87	\$5.00	\$0.517	\$5.52	\$4.00	\$0.517	\$4.52
2020 & after	\$1.35	\$0.517	\$1.87	\$5.00	\$0.517	\$5.52	\$3.00	\$0.517	\$3.52

The analysis (*see poster for exact results*) demonstrates that both CFLs and LEDs can be cost effectively promoted at retail in the U.S. residential sector throughout this decade and beyond. In short, the answers to the questions asked in this poster are: **YES**, it is, and **YES**, we should.

For a more detailed discussion of the analysis and results please see: http://www.appliedproactive.com/uploads/pdf/Craigo-Snell_IEPEC2013_PosterWrite-up.pdf

References

- D&R (2012). "Residential Lighting Market Profile 2012." *Prepared by*: D&R International. See <u>www.betterdatabetterdesign.com</u> for more information.
- EPA (2011). "Next Generation Lighting Programs: Opportunities to Advance Efficient Lighting for a Cleaner Environment." October 2011.
- Hornby, Rick, P. Chernick, C. Swanson, D. White, J. Gifford, M. Chang, N.Hughes, M. Wittenstein, R. Wilson, and B. Biewald (2011). "Avoided Energy Supply Costs in New England: 2011 Report. Prepared by: Synapse Energy Economics. Prepared for: Avoided-Energy-Supply-Component (AESC) Study Group. August 11, 2011.
- KEMA, The Cadmus Group, Itron, PA Consulting Group, and Jai J. Mitchell Analytics. (2010). "Final Evaluation Report: Upstream Lighting Program. Volume 1." Prepared for the California Public Utilities Commission, Energy Division, CALMAC Study ID: CPU0015.01, February 8, 2010.
- NEEP (2012). "Northeast Residential Lighting Strategy 2012-2013 Update." *Primary Author*: Energy Futures Group. August 2012.
- York, Dan, M. Molina, M. Neubauer, S. Nowak, S. Nadel, A. Chittum, N. Elliott, K. Farley, B. Foster,
 H. Sachs, and P.Witte (2013). "Frontiers of Energy Efficiency: Next Generation Programs Reach
 for High Energy Savings. ACEEE Report # U131, January 2013.