Billing Analysis & Environment that "Re-Sets" Savings for Programmable Thermostats in New Homes

By: Pierre Baillargeon, Normand Michaud, Lori Megdal and Carl Acocella

Introduction

- Hydro-Québec introduced energy efficiency program for electronic thermostat in 2003
- In 2007, Hydro-Québec hired Econoler to evaluate the program
- Obtaining reliable evaluated savings estimates for programmable thermostats is challenging
 - Program design created opportunity for comparative billing analysis

Concerns and Quebec's Unique Situation

- Past evaluations have found little to no energy savings from programmable thermostat programs in North America
- But different for Quebec!
 - 90% of homes use electricity for heating
 - Most homes have a thermostat for every room

Program overview

- Designed for residential new construction
- Offers incentives for electronic thermostat programmable and non-programmable
- Very effective with a penetration of 80% of the market
- Information kept for each participant in program database

Methodology

- Focus on single family houses (25,703 customers)
- Analysis focussed on winter consumption (less noise in comparative billing analysis)
- Collection of electricity consumption for the last 3 years, totalling 206,861 observations (bi-monthly billing period)
- Collection of daily heating degree days for each period and each region

Methodology -Outliers-

- Outliers criteria:
 - Billing periods which cover more than 80 days
 - Customers with average daily electric consumption smaller than 15 kWh
 - Customers whom own more than 30 electronic thermostats
 - Customers whom own more than 10 programmable thermostats
- After removing outliers, dataset totaled 178,354 observations

Methodology -Analysis of Covariance-

- ANCOVA method was selected in order to correct for the non-random error that would be present in the billing analysis
- Will also reduce noise, making it easier to find program effects
- Model framework was:

• $E_{it} = B_1S_{it} + B_2W_{it} + C_{it}$

E: Average daily consumption

S: Dummy variable

W: Average HDD

C: Constant representing baseload

Analysis and Findings

- Compare single family dwelling with programmable thermostats and those with only non-programmable thermostats
- Test whether the presence of at least one programmable thermostat had an influence on electricity consumption

Analysis and Findings

 The coefficient for presence of programmable thermostats was negative (savings found) and its tstatistic was well over 2 at 12.97

R-Square	0.4226	
<u>Variable</u>	<u>Coefficient</u>	<u>t-Statistic</u>
Presence of programmable thermostat	-1.74	-12.97
Average HDD	3.03	360.90
Baseload	29.98	204.82

Weather & Heating in a Cold Climate

- Extent of cold climate in Québec
 - Could be expected to create non-linear relationship between usage & HDD
 - Simple, common, non-linear (HDD)
 specification did not produce reasonable model
 - Both theory & data inspection suggested non-linear relationship

Analysis and Findings

Final billing analysis based upon models by 6 weather categories

Subgroups (HDD)	Subgroup weight based on weather database	Savings (kWh)	Weighted savings (kWh)	Cumulative savings (kWh)
0-5	7.48 %	64	5	5
5-10	16.69 %	136	23	28
10-17	31.34 %	562	176	204
17-22	18.06 %	705	127	331
22-27	14.12 %	597	84	415
27-35	12.31 %	156	19	434

Research Findings

- Maximum savings is reached for the 17-20 HDD subgroup (7 to -2°C)
- However, saving were shown to drop afterward
 - Hypothesis for non-linear relationship:
 Trade off between maintaining comfort & cost of energy bill was assumed to explain this pattern

Research Findings

- Annual savings for a single family home with at least one programmable thermostat was estimated to be 434 kWh
- Represents a reduction of 3.6% of the heating load
- Savings level per thermostat was then used to estimate expected savings within multifamily dwellings

Conclusion

- Model specification can made significant differences in program savings estimates
- Alternative model specification should be tested as indicated by program theory, past literature, thermal performance and behavioural theory

