A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies

Jean-Sébastien BROC Bernard BOURGES

Session *Gearing up for evaluation – Transportation* 10 June 2010, Paris

Contents

- **Context: why it does matter**
- □ Transportation & Buildings: why it is different
- □ Available evaluation tools: what answers?
- Conclusions and perspectives

Transportation = 25% of the total EU GHG emissions (2006)

Biggest growth: +26% between 1990 and 2004 (UE15)

Relying on fossil fuels at 98%

3

2000

2002

2004

2006

Evaluation & urban transportation policies 4

IEPEC 2010 - 10 June 2010 Jean-Sébastien BROC, Bernard BOURGES

Context: what are the current answers?

technological improvements (ACEA-JAMA-KAMA):

Unit consumption \rightarrow -9% between 1990 and 2004 (EU15, ODYSSEE data) But offset by trends to buy larger and more powerful cars + increase in intensity of use (passenger.km)

promotion of public transportation:

Significant investments and improvements of the offer But almost no changes in modal shares (or even worsening)

other instruments:

congestion charge schemes, parking policies, favoring "soft" modes, etc.

→ recognized need for integrated policies: urban mobility plans

Evaluation & urban transportation policies

IEPEC 2010 – 10 June 2010 Jean-Sébastien BROC, Bernard BOURGES

Transportation & Buildings: common points

energy consumption = unit consumption * quantity

technological & behavioral factors

General need	Mobility	Housing
Main service delivered	Going from a point A to a point B	Keeping home warm
Main parameters related to the unit consumption effect (e.g., expressed in I/km or I/ passenger-km for mobility, or in kWh/m ² for housing)	Mode (e.g., car, bus, bike)	Housing type (e.g., collective dwelling, individual housing)
	Car design (e.g., aerodynamics)	Building design (e.g., form, orientation)
	Car components (e.g., tyres)	Building components (e.g., wall insulation)
	Motor	Heating system
	Fuel	Energy carrier
	Speed	Internal and external temperatures
Main parameter related to the quantity effect:	Distances traveled	Surfaces

Ξhi

Transportation & Buildings: differences

Transportation & Buildings: differences (2)

 comparing calculation formula highlights potentially "hidden" factors:

- speed profiles and "cold engine" share of distances traveled vs. heating load
- vehicles (mass products) vs. dwellings (specific design)
- ✓ scenarios approach vs. "easy-to-compare" before/after situations

Available evaluation tools: what answers?

traffic modeling

from infrastructure design to policy evaluation = new issues

- is the road large enough? → how much emissions?
- peak hour, typical day work \rightarrow 24 hours, 365 days
- traffic flows \rightarrow speed profiles
- → feeding a "modeling chain" (or add-in software)
- + how to integrate policy measures (in the modeling)?

Issues already addressed in case studies, but far from being closed !

Evaluation & urban transportation policies

IEPEC 2010 – 10 June 2010 Jean-Sébastien BROC, Bernard BOURGES

Available evaluation tools: what answers?

Ehrl

Ehl

traffic modeling

- taking into account interactions
- all trips within a given territory
 - spatialized results
 - costly (large amount of data, complex modeling)
- methodological limitations

➔ an option, but still a large room for improvements

Evaluation	&	urban	transportation	policies
11				

```
IEPEC 2010 – 10 June 2010
Jean-Sébastien BROC, Bernard BOURGES
```


- key differences between building and transportation
- → limitations in the use of "classical" methods
- two recurrent issues: interactions and causality
- →budget intensive measures = choosing between options
- two interesting tracks
- → portfolio approach for process evaluations
- → adapting traffic modeling methods

Both are complementary !

Improvements/innovations could be achieved by crossing transportation & evaluation communities.

IEPEC 2010 – 10 June 2010 Jean-Sébastien BROC, Bernard BOURGES

Thank you for your attention.

Hoping there is still some time for discussions

Evaluation & urban transportation policies