Addressing Data Center Efficiency Lessons Learned From Process Evaluations of Utility Energy Efficiency Programs

IEPEC Conference Session 16: Industrial Strength Evaluation June 10, 2010

AJ Howard Energy Market Innovations (EMI), Inc. <u>ajhoward@emi1.com</u>

Agenda

Intro to Data Centers

A New Opportunity for Savings

Challenges

Identified Barriers in a New Industry

Lessons Learned

Results from Research and Evaluation

What is a Data Center?

Facilities housing high-power Information Technology (IT) equipment Computer Servers Data Storage Networking Equipment

Why Focus on Data Centers?

Energy Use is Large and Growing!

- ➡1% of worldwide energy consumption¹
- 12% yearly energy growth worldwide¹
- In Western Europe
 - 56 TWh in 2007, expected to rise to 104 TWh in 2020²

Source: Worldwide Electricity Used in Data Centers, J. Koomey 2008.
 Presentation: *The New European Policy for Energy Efficiency in Data Centres: The Code of Conduct.* P. Bertoldi. 2009.

Why Focus on Data Centers?

1. Source: Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers, Greenburg et al, 2006.

Size and Energy Use by Type

Туре	Footage	Servers	Description	Percent of Energy Use
	.000 (12	<u> </u>	No external storage, office A/C, May	400/
Server Closet	<200 ft²	One to two	have UPS	12%
Server Room	<500 ft ²	A few to dozens	No external storage, office A/C, May have UPS	16%
Localized Data Center	<1.000 ft ²	Dozens to hundreds	Moderate external storage, in-room	18%
Mid-Tier Data Center	<5,000 ft ²	Hundreds	Extensive external storage, in-room cooling, central chiller, high reliability UPS	16%
Enterprise- Class Data Center	5,000+ ft ²	Thousands+	Thousands of storage devices, efficient cooling and backup subsystems	38%

Source: EPA Report to Congress on Server and Data Center Energy Efficiency, August 2, 2007

Where Does the Power Go?

Where Does the Power Go?

ENERGY STAR & DOE

U.S. FPA	Existing Specifications	Specifications Under Development
Energy STAR	Enterprise Servers V1.0 Computers V5.0 Data Center Rating V1.0 (June 2010)	Enterprise Servers V2.0 Data Center Storage V1.0 Uninterruptable Power Supplies (UPS) V1.0 Small Networking Equipment V1.0

- U.S. Department of Energy (DOE)
- Certified Practitioner Program
- DC Pro Software Tool Suite
- American Recovery and Reinvestment Act
 EMI

European Activities

- European Commission Code of Conduct (CoC) for data centers
- EC Adoption of ENERGY STAR Specifications
- Efficient-Servers Initiative by the Austrian Energy Agency
- Individual Country Efforts e.g., Environment and Energy Management Agency in France

Where Do Utilities Come In – Available Programs

Holistic Data Center

- Engineering Support / Technical Assistance
- Efficiency Feasibility Studies or Energy Audits

Cooling IT Other Power Chillers / HVAC / Lighting • Efficient Servers • UPS • Efficient Power • Ffficient **Economizers** • PDU • Air Flow Supplies Computers Transformers Management • Server • PC Power Inverters Advanced Management Virtualization Controls Plug Load • Storage • VFDs Virtualization Management (e.g., MAID)

What is the Target Market?

- ➡ Who qualifies?
- Where do you spend your marketing dollars?

High-Tech	IT Heavy	Commercial &
Companies	Companies	Industrial
IT/Internet Companies (e.g., Google, MSFT, Intel, Amazon)	Financial Services, Health Care, Engineering, Labs, etc.	Retail, Office Space, Manufacturers, etc.

Where are the Data Centers?

Other Challenges

- Rapidly changing technologies & markets
- Extreme focus on reliability
- ➡ Split incentive
- Knowledge gap between program designers (i.e. utilities) and data center industries
- Capital intensive upgrades

A Special Challenge: Colocation Facilities

Growing faster than many industries

➡ 15% annualized growth¹

Identified Barriers to Energy Efficiency

- Aggravated split incentive
- Pricing models
- Focus on reliability
- Reaching the colocation customers

Source: *Tier1 Research Datacenter Market Trends (Presentation to the CFRT 11/6/2009)*

Lessons Learned

Treat Data Centers Differently!

- Targeted programs & outreach
- Effectively communicate program opportunities
- Understand specific barriers and decision making practices

Other Resources

AFCOM

<u>http://afcom.com</u>

Consortium for Energy Efficiency Program Database

<u>http://www.cee1.org/com/dcs/dcs-main.php3</u>

Database of State Incentives for Renewable and Efficiency

<u>http://www.dsireusa.org</u>

Data Center Dynamics

<u>http://datacenterdynamics.com</u>

DOE

- <u>http://www.eere.energy.gov/datacenters</u>
 ENERGY STAR
- <u>http://www.energystar.gov/datacenters</u>

The Green Grid

- <u>http://www.thegreengrid.org</u>
- http://hightech.lbl.gov

Uptime Institute

<u>http://www.uptimeinstitute.org/</u>

Contact

206.621.1160

EM

http://datacenterblog.emi1.com/