

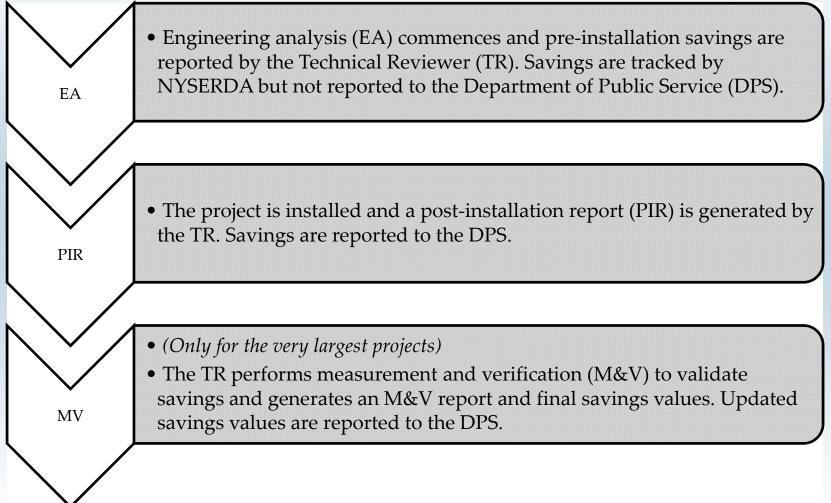
INTERNATIONAL ENERGY PROGRAM EVALUATION CONFERENCE

Leaving the Rearview Mirror Behind Nick Collins, ERS

2015 IEPEC Conference — Long Beach, California

OBJECTIVES

- Program background
- Discuss the effectiveness of the concurrent evaluation process through the lens of a recently completed impact evaluation of NYSERDA's IPE program
- Discuss lessons learned and the resulting modifications to the concurrent process
- Present perspectives of implementers and evaluators

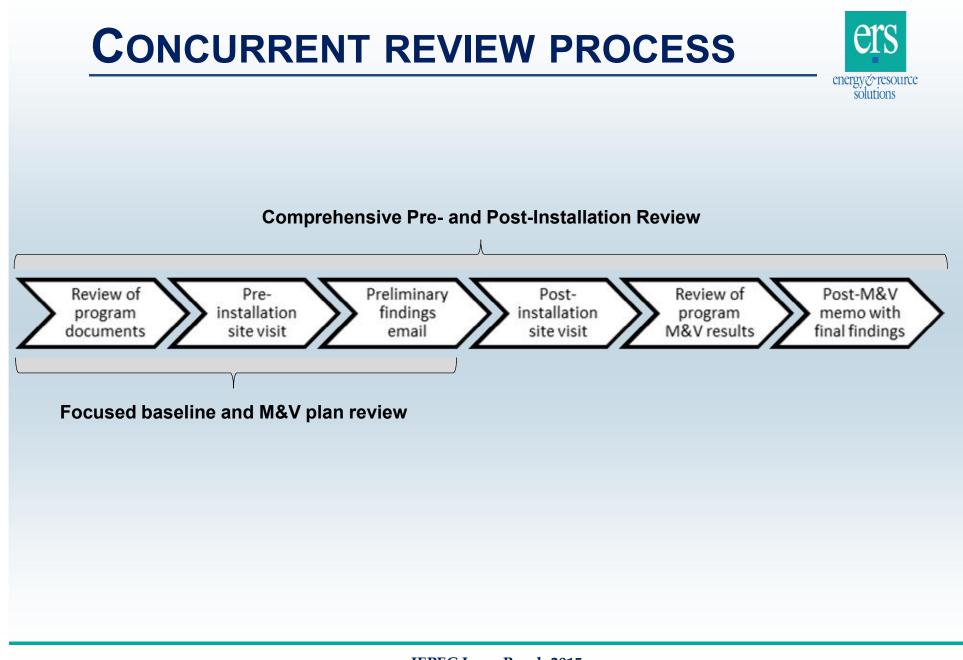

WHAT IS CONCURRENT REVIEW?

- Real-time project engineering review from an evaluator's perspective, before savings are finalized
 - > Baseline characterization
 - > Measurement and verification plan review
- Applied to projects with >5,000,000 kWh/yr. of electricity and/or > 20,000 MMBtu/yr. of natural gas savings

NYSERDA IPE PROGRAM

WHY CONCURRENT REVIEW?

□ Increase the level of engineering rigor


- Mitigate variability in results and provide greater confidence
- Fewer surprises during retrospective evaluation
- Less disturbance to customers (fewer touch points)

CONCURRENT REVIEW PROCESS

□ Two levels of review

- > Focused baseline and M&V plan review
 - Large projects where the baseline is readily identifiable, and pre and post conditions are measureable
- Comprehensive Pre- and Post-Installation Review
 - Large projects with complex baseline characterization, complex measurement and verification requirements, capacity expansions (theoretical baseline)

IEPEC Long Beach 2015

CONCURRENT REVIEW PORTFOLIO

36 projects receiving concurrent review¹
 > 127,000 MWh/yr electrical savings
 > 6.1 MW demand reduction
 > 319,000 MMBtu/yr natural gas savings

¹ as of Spring 2015

RECENT EVALUATION FINDINGS

3 concurrent projects (a census) were included in the recent retrospective program evaluation
 RRs

 0.95
 1.0

≻ 1.08

WHAT DID THE CONCURRENT REVIEW FIND?

- Differences most often noted during concurrent review
 - Comments on M&V planning and implementation
 - 88% of projects
 - Comments on calculation assumptions and methods
 - 72% of projects
 - Comments on baseline characterization
 - 61% of projects

DIFFERENCES NOTED - M&V PLANNING AND IMPLEMENTATION

Recommendations included

- Collecting additional data to triangulate whole-facility analysis results
- Providing better resolution on M&V sampling, metering duration, and data collection strategies

DIFFERENCES NOTED - CALCULATION ASSUMPTIONS AND METHODS

Most projects were large and complex capacity expansions requiring regression analysis against an independent variable

- Review of program M&V findings added to concurrent scope
 - > Opportunity for evaluators to verify that recommendations were incorporated
 - Brought consistency to methodology by which capacity expansion projects were analyzed

DIFFERENCES NOTED - BASELINE CHARACTERIZATION

□ Complex issue in industrial settings

- Capacity expansion provides additional complexity
 - Existing baseline equipment must be supplemented with theoretical baseline equipment to achieve the post-installation production volumes
 - Baseline characterization flow chart developed to bring consistency to program and evaluation perspectives
 - Industry/system specific research performed by evaluators to justify and document baseline

KEYS TO CONCURRENT PROCESS SUCCESS

- Supportive regulatory environmentCollaborative review
- No commitment to accept evaluators concurrent review findings
- Open communication and timely feedback
- □ Early involvement
- □ Feedback loop to all parties

- Less formal feedback expedites the review
 - Formal feedback at each stage could not keep up with project pace
- Waiting too long to enroll a project to ensure it is a good fit (avoid sunk review costs)
 - > This risks missing pre-installation metering opportunities

□ Additional cost

- > There are additional upfront costs
- The authors calculate the additional upfront costs will lower the cost of the next retrospective evaluation and reduce the sample size though improved error ratios

Growing pains

The process changes the nature of the interactions between program, evaluators and technical assistance providers

□ Retrospective evaluation still has a place

Concurrent evaluation must assume some variables, such as actual production volume. Retrospective would measure such a variable.

□ Independent collaboration

- The process changes the nature of the interactions between program, evaluators and technical assistance providers
- The players must be able to articulate differences of an opinion in an open, constructive manner.

SUMMARY

 Concurrent evaluation is powerful tool to mitigate uncertainty associated with retrospective evaluation
 It must be timely
 It must be collaborative

SUMMARY

- The process as described is tailored for the review of a relatively small number of large industrial projects
- The concepts and principles are widely applicable, but the mechanisms will have to change to match program goals, structures, and funding.

THANK YOU!

□ Co-authors

- > Betsy Ricker, ERS
- Carley Murray, NYSERDA
- > Cheryl Glanton, NYSERDA
- Evaluation client
 - > Judeen Byrne, and Jennifer Meissner, NYSERDA

Nick Collins, ERS 207-622-6888 x.401 ncollins@ers-inc.com