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Abstract

The relative contribution of measurement uncertainty to combined measurement and sampling
uncertainty is investigated in the context of Measurement and Verification (M&V) projects where
the whole population is not metered. An example of an M&V energy meter conforming to the
0.5S accuracy class is considered. Using normal distribution statistics and realistic ranges for the
relevant parameters, it is found that measurement uncertainty makes a negligible contribution to
the overall uncertainty for electricity metering cases where population variance is not unusually
low. The case of instruments other than electricity meters, such as thermocouples, is considered,
and it is found that in such cases measurement uncertainty may make a material contribution to
overall uncertainty. The relationship between energy project risk and M&V meter accuracy is
defined and explored by using the example of a single metered facility. It is found that installing
higher accuracy meters does not guarantee a decrease in project risk in performance contracting
situations where guaranteed or shared savings models are adopted. These methods and results are
useful for energy professionals when making metering decisions in the context of project cost and
risk.

Energy Use Measurement Uncertainty in M&V

Three kinds of uncertainty have been identified in the M&V context: measurement un-
certainty, sampling uncertainty, and modelling uncertainty. To date, most work has focussed on
sampling uncertainty and modelling uncertainty. Measurement uncertainty has been assumed to be
negligible. In this paper, we will investigate the contribution of measurement uncertainty relative
to sampling uncertainty in the M&V context, establishing limits to when this assumption holds,
and how these numbers influence project decisions.

From the outset it should be noted that the relative contribution of measurement uncertainty
can only be considered when there are other sources of uncertainty, such as sampling. In cases
where all facilities are metered or revenue meter data are used, measurement uncertainty is the
only source of uncertainty, other than that arising from the mathematical model. The trade-off

between installing higher or lower accuracy meters in such a case is explored in the section ‘Meter
Selection and Risk Mitigation’.

Although the project risk associated with measurement uncertainty has been identified by
both researchers and practitioners (Lee, Lam & Lee 2015), it has not been addressed in literature,
to our knowledge. Related investigations have been performed, for example in the American So-
ciety for Heating, Refrigeration and Air Conditioning Engineers’ (ASHRAE) Guideline RA96:



Engineering Analysis of Experimental Data (ASHRAE 1986), a comprehensive introduction to
handling uncertainty in engineering measurements is provided. ASHRAE Guideline 14-2002:
Measurement of Energy and Demand Savings (ASHRAE 2002) catalogues the accuracies for dif-
ferent measurement equipment used in this study, and also contains further methods for calcula-
tion. Regarding financial decision support for Energy Performance Contracting (EPC), risk has
been analysed from an economic perspective using Monte Carlo analysis (Jackson 2010) and the
US Department of Energy’s EnergyPlus software (Lee et al. 2013). Deng et al. (2015) provide
a useful summary of the design of energy performance contracts under uncertainty. Bayesian
methods have also been implemented for building simulation covariate calibration and uncertainty
analysis (Heo, Choudhary & Augenbroe 2012; Heo & Zavala, 2012), and following from that,
quantitative risk analysis for decision support in retrofit project planning was explored (Heo, Au-
genbroe & Choudhary 2013). These studies focus on simulation accuracy rather than metering
decision making. Finally, some of the most relevant research on this topic is in the area of legal
metrology, where measurement uncertainty and cost are traded off in a decision support framework
(Pendrill & Källgren 2006). The focus of their study is conformance to a given standard rather than
the verification of individual measurements, and risk was viewed from a government perspective
as a function of the cost to society.

Governance Structure

In the South African context, an M&V Team is an independent third party verifying the
savings achieved by the Energy Services Company (Esco) also called the Project Developer (PD),
on behalf of a client or facility owner. These energy efficiency or demand side management
projects are usually incentivized by the national electricity utility, Eskom, or initiatives such as
the United Nations Clean Development Mechanism. Measurement and Verification with reporting
inside given uncertainty bounds is usually stipulated in the contract.

Meters can be purchased by the sponsor, Eskom, although for private projects or to expe-
dite utility projects, the client often purchases meters. Examples in this paper will assume such
governance structures.

Paper Outline

In this paper, we will first devise a method for incorporating measurement uncertainty into
the standard M&V measures of reporting uncertainty and sample size calculations. These relations
are especially useful to M&V professionals, but can be used by project developers as well. They
are implemented in a number of examples for the rest of the paper. The first is the question of
choosing between two common accuracy classes of electricity meter: 0.2S and 0.5S. A next case
considers cheap energy meters using a clip-on current transformers are installed. What accuracy
can we expect, given unmeasured voltage fluctuations? This is extended even further to other
measurement instruments, and complexities are discussed. Last, a case study is presented related
to whether a project developer in a guaranteed savings energy performance contract can derive any
monetary advantage from installing a more accurate (and more expensive) meter.



Calculation Method

Before a detailed investigation of measurement uncertainty can be made, the sampling
distribution should be carefully defined. There are three distributions relevant to sampling: The
population distribution is the true distribution of the population, and is unavailable to the engi-
neer unless he samples the total population with perfect measurement equipment. The sampling
distribution is the theoretical distribution for samples of a given size. With perfect measurement
equipment, the sample distribution will be equal to the sampling distribution. The sample distri-
bution is the observed distribution on the sample that was actually taken, with the measurement
equipment actually used. This is the only distribution accessible to the engineer.

The calculations below only are valid under the standard statistical assumptions of indepen-
dent, normally distributed data. We also assume that although the measurement instrument may be
inaccurate, a large population of such instruments will be unbiased. This implies that the measured
sample mean will tend to the true mean as the sample size tends to infinity. We also assume that
measurement errors are normally distributed around the mean.

Let the subscript s denote the (theoretical) sampling distribution, and the subscript m denote
measurement parameters. Furthermore, let σm be the measured standard deviation of the sample
and zm be the standard score of the known confidence level α on the measured data. Since only
measured data is available, consider sm as the sample standard deviation and x̄ as the sample mean,
and pm as the precision or error bound. The upper limit of this error bound should be equal to the
upper confidence limit:

x̄ + pm x̄ = x̄ + smzm, (1)

∴ pm x̄ = smzm, (2)

∴ sm =
pm

zm
x̄. (3)

The standard deviation, and therefore the variance and distribution on the measurement
data has now been characterised by writing the standard deviation in terms of the known precision
level, desired confidence level, and the sample mean.

Although this is common knowledge to most practitioners, it is necessary to clarify the
different ways in which errors may be expressed in Measurement and Verification (M&V). First,
the error of some measurement system may be expressed statistically as a standard deviation from
the mean, or it may be expressed as a maximum error. The maximum error approach is popular and
conservative. However, it represents a highly unlikely and unnecessarily strict case where all the
individual errors are assumed to be at their maxima simultaneously. We will consider the statistical
approach. The total error is calculated as a root mean square, which the way in which standard
deviations are added. It should also be stated with a certain confidence level.

Errors can also be expressed in absolute or relative terms. 200 kWh±10 kWh has an ab-
solute error of 10 kWh, but a relative error of 5%. The expressions for adding and multiplying
uncertain values differ according to which expression is used. We will be expressing errors in
relative (percentage) terms, except when stated otherwise.



When combining two independent normal distributions, the means are added arithmeti-
cally. However, the total variance of the combined distribution should be

s2
combined = s2

s + s2
m, (4)

where s2
s is the sampling variance. But from (3),

s2
m =

p2
m

z2
m

x̄2. (5)

Therefore,

s2
combined = s2

s +
p2

m

z2
m

x̄2. (6)

It is useful to define these relations in terms of the coefficient of variance(CV), since this
makes the calculation independent of the size of the mean and variance:

CV =
s
x̄
. (7)

Also, since sample size required for M&V reporting is proportional to the CV value, the relative
contribution of measurement uncertainty to CVcombined is an indication of size of the effect of mea-
surement uncertainty on overall project cost. Substituting (6) we can now define the combined CV
as

CVcombined =
scombined

x̄
=

√
s2

s +
p2

m
z2

m
x̄2

x̄
. (8)

This may be further simplified to

CVcombined =

√
CV2

s +
p2

m

z2
m
. (9)

We have now reduced the combined CV to a formula needing only values that are readily avail-
able (meter accuracy), and widely estimated (CVs). An example of (9) is plotted in Figure 1 at
the 95% confidence level, which is the most common one used in metrology (ASHRAE 1986).
This corresponds to a “coverage factor” of k = 2, or 2σ. The coverage factor refers to the area
under the normal distribution curve, similar to a two-sided confidence interval, expressed in terms
of standard deviations, or “sigmas”. So a coverage factor of one corresponds to 1σ, or 68% con-
fidence. A coverage factor of two would be 2σ or 95.44%, a coverage factor of 3 to 99.74%, and
so forth. We can see that for pm ≤ 0.1 and CVs ≥ 0.2, the overall uncertainty is dominated by
sampling uncertainty, and measurement uncertainty can be safely neglected.



Measurement Precision

S
am

p
li

n
g

 C
V

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.4

0.6

0.8

1

Figure 1: Contour plot of combined CV as a function of sample CV and measurement precision
in equation (9), for a measurement confidence of 95%.

The most common reporting level is “90/10”, that is, the reporting confidence is 90%, and
the reporting precision 10%. The formula for the sample size n required to report with a given
confidence αr at zr, and a precision pr, is:

n =
z2

r CV2

p2
r

. (10)

By substituting (9), we can write the required sample size as a function of sampling CV,
and measurement accuracy, and required reporting precision:

n =

(
CV2

s +
p2

m

z2
m

)
z2

r

p2
r
. (11)

An example of (11) is plotted in Figure 2.

Practical Implementation

Realistic case. Consider the case of M&V (not revenue) energy meters that conform
to the ANSI C12.20 standard (ANSI 2002), and its international counterpart, the IEC 62053-
22 (IEC 2003). These standards specify that electricity meters should have an accuracy of 0.5%
for class 0.5S and 0.2% for class 0.2S during normal operation. However, for the 0.5S class, pre-
cision may be up to 1% for low power factors. ASHRAE 14-2002 Technical note #7 of A5.6.2.1
(ASHRAE 2002) gives the instrument system error as 2%, which includes the CT accuracy. The
standards do not specify a confidence interval on these values. We may therefore select the 2%
value as a realistically low precision, and zm = 1.96, which corresponds to an 95% confidence
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Figure 2: Contour plot of (11): The required sample size as a function of sampling CV and
measurement precision for reporting at the 90/10 level.

level (ASHRAE 1986). We may also assume CV= 0.05: that is, a stable process with a coefficient
of variance of 5%. This reduces the contribution of sampling uncertainty to overall uncertainty.

Using the above-mentioned figures, by (9), the ratio between CVcombined and CVs is:

CVcombined

CVs
=

√
CV2

s +
p2

m
z2

m

CVs
. (12)

Therefore, by substituting our assumptions above,

CVcombined

CVs
=

√
0.052 + 0.022

1.962

0.05
= 1.021. (13)

Thus in a worst-case scenario, measurement uncertainty would add 2.1% relative to the sampling
uncertainty. In other words, if the uncertainty on the savings is 10%, sampling uncertainty com-
prises roughly 9.8% of this figure, and measurement uncertainty comprises the other 0.2%. It can
be seen that in such cases, measurement uncertainty may be neglected in most practical meter sam-
pling applications such as Residential Mass Rollout (RMR) projects.

Case of Supply Voltage Unknown. It should be noted that certain cheaper meters use
split-core current transformers (CT’s) clipped around the line, and do not measure voltage. These
meters are a considerably more cost-effective alternative in terms of meter cost and installation
complexity. However, for loads where voltage isn’t regulated by appliance circuitry, such as re-
sistance heating equipment, energy use would be directly proportional to the unmeasured voltage.



The true measurement uncertainty is then much higher than that reported above. In Europe, util-
ity supply voltage is determined to be 230V±10% (CENELEC 1988), and in the United States,
120V±5% (ANSI 2006). However, certain asymmetrical tolerances may also hold. For ANSI
C84.1 Range B, these tolerances are −13% and +6%. These asymmetrical tolerances may skew
the calculation, since under-voltages are twice as likely as over-voltages, and equipment may there-
fore consume less energy than reported by the meter.

For the symmetrical tolerance case of ±10%, if voltage variation were Gaussian with a
mean at the nominal voltage, these variations would cancel out over time. However, the supply
voltage at a facility such as a house varies according to a number of factors. For example, it varies
with the distance of its distribution transformer from the substation on the primary feeder, the
distance between this house and the transformer on the secondary feeder, the number of facilities
on the secondary feeder, etc. Therefore the distribution of voltage is not Gaussian and will not
cancel out over time. In order to simplify most large-scale metering projects, however, it may still
be assumed that the measurement error is Gaussian, since if you sample enough facilities over
a large area, some will be close to the transformers and some will be further away. For a small
sample over a small area of the grid, or where facilities fall along a limited number of branches
of a distribution network, this simplifying assumption will not hold, and supply voltage should be
measured.

If we assume that the service level of the utility with respect to the voltage tolerance is 99%,
we can calculate the total measurement error. However, we first have to convert the 99/10 accuracy
specification to the 95/p2 level in order to do the calculation.

From the standard normal formula, for x as the unknown point voltage, µ as the mean
supply voltage, and σ as the standard deviation on the supply voltage,

z =
x − µ
σ

. (14)

Now, for α1 = 99%, z1 = 2.576 and α2 = 95%, z2 = 1.96. Let x1 be the upper tolerance
limit of p1 =10% on 230V, therefore x1 = 253V. Let x2 be the unknown voltage limit at α = 95%
(the instrument confidence level). We need to convert the supply voltage error specification to
this confidence level in order to calculate the combined uncertainty. From (14) with algebraic
manipulation,

x2 =
z2(x1 − µ)

z1
+ µ. (15)

Thus the equivalent voltage limit for the 95% confidence interval is 247.5V, or p2 = 7.6%.
We can now say that 99/10 ≡ 95/7.6.

Assuming that they are uncorrelated, the two measurement errors (the instrument error, and
the voltage error) can be multiplied according to the principle in (4), so that the new measurement
error becomes:

pm =
√

0.0762 + 0.0052 = 7.603%. (16)

Substituting this new figure into (12) for CVs = 0.5, we find that the new CVcombined =

1.003, 0.3% higher because of measurement uncertainty. This increases the required sample size
from 68 to 69 for a 90/10 reporting level. One could argue that the relative contribution of mea-
surement uncertainty is small because the sampling uncertainty dominates. However, the required



sample size also decreases as CVs decreases. For a stable system with CVs = 0.1, the addition
the measurement uncertainty increases the required 90/10 sample size from 3 to 4. Although this
seems like a small change, not considering measurement uncertainty and installing too few meters
will mean that the M&V report cannot conform to the reporting accuracy requirements.

Measurement Uncertainty for Other Instruments

Parameters other than energy are often measured in order to estimate covariate relationships
and calculate energy use. For example, if a relationship between outside air temperature and
building energy use can be established, energy savings may be calculated given temperature data
from the baseline and reporting periods. Other measurements may include the temperature in
ducts or pipes, ambient temperature, humidity, flow rate, wind speed, solar radiation, or machine
run time. Unlike electricity which is very regular and precise, the spatial and temporal variability in
these cases is significant. For example, the flow rate and temperature in a duct varies between the
edge and the centre, and features such as elbows impact flow and heat transfer characteristics for
a non-negligible portion of the duct. This is compounded by measurement instrument imprecision
much higher than those of electricity meters, as well as a greater sensitivity to operator skill.
Because of these complex interactions it is useful to work with general error estimates such as
those found in Appendix A5.6 of the ASHRAE Guideline 14-2002 (ASHRAE 2002). Accuracies
for these devices are usually between 2% and 5%, but these are only approximations.

For M&V measurements where the parameters measured above are related back to electric-
ity usage using a mathematical model, the impact of measurement uncertainty on overall reporting
uncertainty may be higher than figures mentioned above. Consider the case of modelling the im-
pact of boiler insulation. The standing loss of a boiler is influenced by convective and radiative heat
transfer. Radiation heat transfer is a function of T 4

boiler − T 4
surroundings. Assume an optimistic value

of 2% error with a 95% confidence level on the temperature readings of the outside surface from
a thermocouple or infrared thermometer (ASHRAE 2002). In this case, the radiation heat transfer
may vary by as much as 23.6% for Tboiler = 80°C and Tsurroundings = 25°C (353.15K and 298.15K).
(Usually convective heat transfer dominates and so the overall uncertainty may be lower than this
value, but this should be determined on a case-by-case basis.)

Another common example of such complex interactions is the leaking of pipes in under-
ground mines. Technical Note #44 of ASHRAE 14-2002 A5.6.2.5 gives the instrument system
error for the bucket/stopwatch technique as 5% (ASHRAE 2002). If all leaks are measured, the
overall uncertainty on water waste will be 5% (one can assume a 95% confidence interval, thus
95/5). However, since flow rate output is related non-linearly to input energy for centrifugal
pumps, the energy use due to leakage may vary non-linearly, and will depend on the pump and
system characteristics. A 5% leak rate uncertainty will then translate in to a larger energy use
uncertainty.

These calculations are scenario-specific, but illustrate how modelling uncertainty can be
sensitive to measurement uncertainty. The measurement accuracy by itself may be negligible, but
the way in which these data are manipulated during calculation could increase reporting uncertainty
to unacceptable levels. No general rule will capture the physical complexity of such measurement
systems, but by applying the methods outlined in this paper, such uncertainty can be quantified
adequately.



Meter Selection and Risk Mitigation

Consider the following Energy Performance Contract example. The project developer has
to decide between the two meters described earlier, and he decides to to a cost/benefit analysis
taking metering uncertainty into account:

A guaranteed savings model is agreed upon. The project developer guarantees savings G,
such that the project developer compensates the owner for any savings shortfall. The profit from
any surplus savings are shared between the owner and project developer in the ratio β : (1−β). Let
the energy rate be r $/kWh. The owner’s profit (above guaranteed savings) can be represented as:

Owner Profit =

{
0 ∀ x ≤ G
r(βx − βG) ∀ x > G (17)

The project developer’s profit may be defined as:

PD Profit =

{
−r(G − x) ∀ x ≤ G
r
[
(1 − β)x −G(1 − β)

]
∀ x > G (18)

If the probability of realising savings x is p(x), the Expected Value (EV) for the owner is
simply the probability of a certain savings scenario, multiplied by its associated cost:

EVowner = r
∫ ∞

G
(βx − βG)p(x)dx, (19)

and for the project developer:

EVPD = −r
∫ G

−∞

(G − x)p(x)dx + r
∫ ∞

G

[
(1 − β)x −G(1 − β)

]
p(x)dx. (20)

In the context of meter selection, one can reason about this formulation in two ways. First,
a more accurate meter may increase the expected value of the project. Or second, a more accu-
rate meter allows the project developer to guarantee more savings (a higher breakeven point for
expected value), which makes the tender more competitive. The first option is considered below.

Suppose the project developer estimates true savings to be distributed as N(1000, 300) MWh.
The project developer and owner agree that any additional savings will be split 90:10. Thus β = 0.9.
The energy rate is r =R1/kWh (1 South African Rand). The project developer thinks that he is
willing to guarantee 700 MWh of savings, to minimise downside risk. The Project developer now
wants to decide how to meter the installation, and if it would be worthwhile to install a Class 0.2S
meter instead of a Class 0.5S meter. Together with their CT’s, the measurement system accuracies
are assumed to be 1% and 2% respectively.

Although this can be solve analytically, a standard Monte Carlo simulation can also be used
model these two choices. This approach is adopted because of its scalability, should additional
complexity be added later. Let pm v N(0, pm), and True Savings v N(1000, 300). Then

x =
True Savings

1 + pm
. (21)

The project developer finds that for a Class 0.5S meter, his expected value is R6,551, and
for the Class 0.2S meter, it is R6,526. Similarly, the owner’s expected value is constant at approxi-
mately R290,000. This seems to be a counter-intuitive result for two reasons: the numbers are very



Figure 3: Expected values for project developers and owner under different savings scenarios,
given the assumptions in the example problem.

close to one another, and the better meter has a lower expected value. This may be explained by
noting that the values for a Monte Carlo simulation are not exact. However, for this specific case
it also illustrates that a more accurate meter not only minimises downside risk, but also potential
profitability on the upside since the tail of the distribution becomes thinner. This can be visualised
from Figure 3. The numbers are, however, so small as to be insignificant. Should a shared savings
model be adopted rather than a guaranteed savings model, the downside risk for the project devel-
oper would not cancel out the potential for upside profit as it does at the moment. However, more
accurate meters may suffer from the same effect in this case. The “tightening” the distribution
around a mean value decreases the potentially profitable tail values. It should be noted that this
tightening, although less profitable, approaches a truer representation of reality. The “additional”
profitability that the project developer and owner lose is solely due to metering error, and should
not be viewed as real savings.

Conclusion

In most M&V electricity meter sampling cases where sampling CV is not very low (i.e.
stable, predictable processes), the cost of higher accuracy metering (e.g. Class 0.2S over Class
0.5S) is not justified by the increased reporting accuracy. Both “low” and “high” accuracy meters
make a negligible uncertainty contribution compared to the uncertainty arising from sampling only
a statistically significant fraction of the population. In such cases, a larger sample of the lower
accuracy electricity meters will be of greater benefit in minimising overall uncertainty.

In the project planning, metering cost is often a perceived as a barrier to feasibility for
the sponsor. Potential projects are not implemented because adequate metering is thought to be
too expensive, or because its contribution to reporting uncertainty is thought to be too large. By
using the methods outlined in this paper, this contribution can be determined in a mathematically
rigorous way, increasing the number of projects eligible for implementation.



For projects measuring independent variables with a strong correlation to energy use, the
contribution of these instruments’ uncertainty should be calculated, as it may make a material
difference to the overall uncertainty. In such cases, the combination of a low cost electricity me-
ter with a high-accuracy covariate measurement instrument should be considered. For example,
where energy use is sensitive to outside air temperature, an accurate and professionally installed
temperature measurement and logging device, combined with a 0.5S energy meter, could yield
more accurate results than a more expensive 0.2S energy meter and weather bureau data.

For energy performance contracting projects using both the guaranteed and shared savings
models, it is found that more accurate meters do not necessarily increase the project’s expected
value for the project developer or the owner. A more accurate meter reduces both upside and
downside risk. For such cases, contract requirements rather than profit should drive metering
decisions.

References

American National Standards Institute (ANSI). 2002. ANSI C12.20 American National Standard
for Electricity Meters - 0.2 and 0.5 Accuracy Classes Washington, D.C.

American National Standards Institute (ANSI). 2006. ANSI C84.1 American National Standard
for Electric Power Systems and Equipment - Voltage Ratings (60 Hertz). Washington, D.C.

American Society for Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). 2002.
ASHRAE Guideline 14:2002. Measurement of Energy and Demand Savings. Atlanta.

American Society for Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). 1986.
ASHRAE Guideline 2-1986 (RA86). Engineering Analysis of Experimental Data. Atlanta.

Deng, Q., Jiang, X., Cui, Q., Zhang, L., 2015. “Strategic Design of Cost Savings Guarantee in
Energy Performance Contracting Under Uncertainty.” Applied Energy 139:68-80.

European Committee for Electrotechnical Standardization (CENELEC). 1988. CENELEC Har-
monization Document HD 472 S1:1988. Brussels.

Heo, Y., Choudhary, R. and Augenbroe, G. 2012. “Calibration of Building Energy Models for
Retrofit Analysis Under Uncertainty” Energy and Buildings 47:550-560.

Heo, Y. and Zavala, V.M. 2012 “Gaussian Process Modelling for Measurement and Verification of
Building Energy Savings.” Energy and Buildings 53:7-18.

Heo, Y., Augenbroe, G. and Choudhary, R. 2013 “Quantitative Risk Assessment for Energy Retrofit
Projects.” Journal of Building Performance Simulation 6 (4):257-268.

International Electrotechnical Commission (IEC). 2003. IEC 62053-22 Electricity Metering Equip-



ment (A.C.) - Particular Requirements - Part 22: Static Meters for Active Energy (Classes
0,2S and 0,5S). Geneva.

Jackson, J. 2010. “Promoting Energy Efficiency Investments with Risk Management Decision
Tools.” Energy Policy 38 (8):3865-3873

Lee, P., Lam, P., Yik, F.W. and Chan, E.H. 2013. “Probabilistic Risk Assessment of the Energy
Saving Shortfall in Energy Performance Contracting Under Uncertainty - a Case Study”
Energy and Buildings 66:353-363.

Lee, P., Lam, P. and Lee, W. 2015 “Risks in Energy Performance Contracting (EPC) Projects.”
Energy and Buildings 92:116-127.

Pendrill, L. and Källgren, H. 2006. “Exhaust Gas Analysers and Optimised Sampling, Uncertain-
ties and Cost.” Accreditation and Quality Assurance 11:496-505.


