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ABSTRACT 

There has been a growing interest in top-down approaches to measuring the impacts of energy 

efficiency programs because these approaches provide a relatively inexpensive option for estimating the 

overall net savings from a portfolio of programs in a given geographic area. The Massachusetts Program 

Administrators (PAs) funded a study to explore the potential for using top-down techniques as an 

additional tool to complement bottom-up approaches to measuring impacts from energy efficiency 

programs because top-down techniques have the potential to capture interactive effects between programs 

and market effects.   

In this paper, we developed two top-down models—one residential and one commercial—that 

used long-term aggregate data from the PAs and municipal utilities in Massachusetts to estimate the net 

electric program savings. The data for the municipal utilities were included in the model in order to provide 

a measure of the baseline level of program activity because, historically, the municipal utilities in 

Massachusetts have had no or significantly lower levels of energy program activity compared to the PAs. 

While the top-down net saving estimates, in general, were comparable to the traditional bottom-up 

estimates, the results were somewhat sensitive to the model specification. The findings from the preferred 

model indicated that a one-dollar increase in energy efficiency expenditures this year would decrease 

electricity consumption by 4.3±2.7 kWh per year in the residential sector and 3.3±2.5 kWh per year in the 

C&I sector. The top-down annual net saving estimates were 187%±117% of the bottom-up annual net 

saving estimates in the residential sector and 101%±78% of that in the C&I sector between 2003 and 2012. 

Introduction 

The Massachusetts PAs funded a study to explore the potential for top-down techniques to 

complement bottom-up approaches to estimating impacts from energy efficiency programs as well as 

exploring whether top-down modeling should play a role in net energy impact evaluation. Top-down 

modeling is an econometric approach to estimating program impacts that employs aggregate cross-

sectional and time series data to model aggregate energy consumption as a function of exogenous 

variables including program activity, price, and other economic factors. The goal of this modeling is to 

isolate the effect of program activity from policy and economic factors, as well as other naturally 

occurring changes.  

One of the primary motivations for the PA-municipal top-down approach was an important initial 

analysis conducted by Lawrence Masland of the Massachusetts Department of Energy Resources. Mr. 

Masland examined trends in per-customer residential energy consumption for PAs and municipal utility 

customers for 1990 through 2011 using the data from the Energy Information Administration’s (EIA) 

Annual Electric Power Industry Reports (EIA-861 data files). His analysis showed that the average 

annual residential electricity consumption per customer for both the PAs and municipal utilities increased 

from 1990 to 2011, but the rate of increase was significantly higher for the municipal utilities.  

Another primary motivation for this model was to establish the counterfactual (no-program) 
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scenario. Understanding the true extent of a program’s impacts requires information regarding the level 

of consumption absent any programmatic activity. This PA-municipal approach extended the timeframe 

long enough to include a period with no programmatic activity, at least for municipal utilities.  

In this paper, we developed a version of a macro-consumption model using aggregate electricity 

consumption data for PAs (at the PA level) and municipal utilities in Massachusetts. We modeled these 

data as a function of exogenous variables including program activity, price, weather, and other 

demographic and economic factors affecting consumption. We ran separate models for the residential 

and commercial and industrial (C&I) sectors. By controlling for other factors that could cause the 

diverging trends in electricity consumption between the PAs and municipal utilities, this top-down model 

sought to isolate the effect of energy-efficiency programs on consumption. The substantial differences 

in energy-efficiency program expenditures across the PAs and the municipal utilities in a given year and 

within PA and municipal utilities over time provided the identifying variation for the model. 

An important part of the study was to identify the most appropriate data sources and gather data 

on energy consumption, energy program activity, and other factors.  The main explanatory variable of 

interest was electric program activity. We attempted to collect detailed data on electric program activity 

from the PAs and municipal utilities for 1990 through 2012. The only piece of electric program data that 

was consistently available across all PAs, municipal utilities, and years was the total residential and C&I 

electric program expenditures. As a result, we used the annual total program expenditures as a proxy for 

the annual energy program activity.  

Residential Model 

This section provides details on residential model specification and presents the model results. 

First, we discuss the data collected for this project. Next, we present the model specification. We then 

present and discuss the residential model results. Finally, we present a comparison of top-down and 

bottom-up estimates of residential net savings.  

Data Collection 

We collected time-series data on residential electricity consumption and factors that could affect 

consumption for all Massachusetts PAs/utilities and towns from 1990 to 2012, including the following 

data elements: 

 Electricity Consumption and Price Data – We collected data on the total residential electricity 

sales, revenue, and customers in Massachusetts from the EIA’s 861 files for 1990 to 2012 for 

each PA and municipal utility. We computed the annual energy consumption per customer and 

average price per kWh using these data. 

 Energy Efficiency Programmatic Activity – We assessed the quality of demand-side 

management program data reported to EIA on the EIA-861 form. The assessment revealed that 

data were missing and/or inconsistent for some PAs and municipal utilities for some years. 

Because it was crucial to gather accurate information for the main explanatory variable of 

interest for the model in order to produce reliable estimates, we made a substantial effort to 

collect the energy efficiency program expenditures data by sector and year from the PAs, the 

municipal utilities, and their association.1  

 Weather Data – We gathered daily temperature data for all weather stations in Massachusetts 

from the National Oceanic and Atmospheric Administration (NOAA) from 1990 through 2012. 

We first computed the annual heating degree days (HDDs) and cooling degree days (CDDs) 

                                                 
1 Despite these efforts, we could not get program data for 12 municipal utilities in the state. These utilities were excluded 

from the analysis. We would especially like to thank Kim Boas of the Massachusetts Municipal Wholesale Electric Company 

(MMWEC) for providing data for its members and the Massachusetts PAs for providing the data for their organizations.  
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for each station. Next, we matched each town to the nearest weather station. Finally, we 

computed a weighted average of annual HDDs and CDDs for each PA/utility service area using 

the number of housing units in each town as the weight. 

 Economic and Demographic Data  – We gathered town-level economic and demographic data 

from the following sources: 

o US Census American Community Survey (ACS) – Contains annual residential 

socioeconomic data at the census block level of granularity—the smallest geographic unit 

used by the US Census Bureau—since 2005. 

o US Decennial Census – Contains residential socioeconomic data at the census block level 

of granularity. Conducted in 1990, 2000, and 2010.2 

o US Census Building Permits Survey – Contains annual construction statistics by permit-

issuing place (usually the township) on new privately owned residential housing units 

authorized by building permits. 

o Bureau of Labor Statistics – Contains annual labor force, employment, and unemployment 

counts at the town level of granularity. 

Model Specification 

As shown in Figure 1, average annual residential electricity consumption per customer for both 

PAs and municipal utilities increased from 1990 to 2012, but the rate of increase was significantly 

higher for the municipal utilities than for the PAs.  

 
         Source: Annual Electric Power Industry Report (EIA-861 data file) 

Figure 1. Residential Electricity Consumption per Customer (in kWh), Massachusetts 

While most, if not all, municipal utilities had residential energy efficiency programs during the 

same period, the municipal utilities were slow to embrace the funding of energy efficiency programs, 

and funding levels were significantly below those of the PAs, as shown in Figure 2.  

                                                 
2 Decennial Census data (1990 and 2000) were used for the period before the annual ACS data were available. In order to 

make the decennial data fit into a data set with yearly time points, we estimated the difference between the two points (1990 

and 2000, for example) and evenly distributed the difference annually between the two data collection points, thereby forcing 

the decennial data to vary from year to year. 
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Source: Massachusetts Program Administrators, municipal utilities, and the Massachusetts Municipal  
Wholesale Electric Company (MMWEC) 

Figure 2. Residential Electric Program Expenditures per Customer (in $), Massachusetts 

While the lower levels of increase in consumption in PA territories could be due to greater 

programmatic activity, accurately estimating programmatic impacts would require controlling for 

structural and exogenous trend factors, which would allow for isolation of the effect of program activity 

from natural changes and policy variables. 

Figure 3 shows the electric service territories by town for the PAs and municipal utilities in 

Massachusetts in 2015. The towns served by the municipal utilities that were included in the residential 

model were fairly well distributed across the state. 

 

Figure 3. Electric Service Territories by Town, Massachusetts, 2015 

For the residential sector, we specified a fixed-effects panel regression model. This type of 
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regression model allows each PA/utility to act as its own control.3 Program activity, the variable of interest 

for estimating program impacts, was incorporated through program expenditure data. The model was 

specified with lagged program activity variables to account for the time between program implementation 

and program-induced reductions in electricity consumption, and because of the fact that energy efficiency 

investments continue to yield savings for the life of measures installed. 

The top-down model sought to estimate the impact of energy efficiency program expenditures on 

electricity consumption by separating that effect from other causes of changes in usage. The fixed-effects 

model estimates electricity consumption as a function of PA/utility current-year and past-year electric 

energy efficiency program expenditures, electricity prices, weather, and economic and demographic 

factors. The regression form used is as follows: 

log(𝐸𝐶𝑖𝑡) = 𝛽1 𝑙𝑜𝑔(𝑃𝑖𝑡) + 𝛽2 log(𝐻𝐷𝐷𝑖𝑡) + 𝛽3 log(𝐶𝐷𝐷𝑖𝑡) + 𝛽4 log(𝐼𝑖𝑡) + 𝛽5 𝐸𝐻𝑖𝑡 + 𝛽6𝑉𝐴𝐿𝑖𝑡 

                       + 𝛽7 𝑁𝐶𝑖𝑡 + 𝛽8 𝑆𝐹𝑖𝑡 + 𝛽9 𝑅𝐸𝑁𝑇𝑖𝑡 + 𝛽10 𝐸𝑀𝑃𝑖𝑡 + ∑ 𝛼𝑗𝐸𝐸𝑖𝑡−𝑗 + 𝛽11𝜏𝑡 + 𝛿𝑖 + 𝜀𝑖𝑡

𝑛

𝑗=0

 

Where: 
log(𝐸𝐶𝑖𝑡) = Natural logarithm of annual consumption per residential customer in 

PA/utility service area i and year t; 
log(𝑃𝑖𝑡) = Natural logarithm of electricity price in 2012 dollars;4  

log(𝐻𝐷𝐷𝑖𝑡) = Natural logarithm of annual heating degree days (base 65); 
log(𝐶𝐷𝐷𝑖𝑡) = Natural logarithm of annual cooling degree days (base 70); 

log(𝐼𝑖𝑡) = Natural logarithm of median household income in 2012 dollars; 
𝐸𝐻𝑖𝑡 = The share of households using electricity as the primary heating fuel; 

𝑉𝐴𝐿𝑖𝑡 = The median house values in 2012 dollars; 
𝑁𝐶𝑖𝑡 = The share of new construction in residential housing, computed as the total 

number of residential new construction permits divided by the total number 

of housing units; 
𝑆𝐹𝑖𝑡 = The share of single-family homes in residential housing; 

𝑅𝐸𝑁𝑇𝑖𝑡 = The share of renters; 
𝐸𝑀𝑃𝑖𝑡 = The employment rate, computed as the number of employees divided by the 

number of people in the labor force; 
𝐸𝐸𝑖𝑡−𝑗 = Total residential electric energy efficiency program expenditures per 

residential customer-j. The coefficient 𝛼𝑗 measures the percentage change in 

electricity consumption in year t from a one-dollar change in energy 

efficiency program expenditures in year t-j. The sum of 𝛼0 through 

𝛼𝑛measures the percentage change in electricity consumption in year t from 

a one-dollar change in energy efficiency program expenditures in year t and 

the previous n years.5 
𝜏𝑡 = Time-trend variable that is equal to 1 in 1990 and increasing by one unit 

annually. This accounts for the naturally occurring change in electricity 

consumption not captured by the variables included in the model;6  

                                                 
3 The inclusion of fixed effects in the model ensures that the estimated regression coefficients are not biased due to non-time-

varying (i.e., PA/utility-specific) characteristics. A random-effects specification is more efficient, but using random effects 

does not fully control for all utility-specific characteristics. Hausman tests were used to determine which model specification 

to use. The findings from those tests showed that fixed effects were more appropriate for this analysis. 
4 Nominal prices were adjusted to reflect 2012 dollars using the GDP implicit price deflator from the Federal Reserve 

Economic Data. 
5 We also tested specifications with distributed lag models with a special parameterization of lagged energy efficiency 

expenditures variables in order to account for the possible non-linear and delayed effects of energy efficiency program 

activity on consumption. The results were similar. 
6 As a robustness check, we also tested specifications with non-linear (a natural cubic spline, or some second- or third-degree 
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𝛿𝑖 = PA/utility fixed effects that capture time-invariant PA/utility-specific fixed 

effects in electricity consumption. There may be a certain PA/utility-level 

variation in the data that is not necessarily related to energy efficiency 

programmatic activity;  
𝜀𝑖𝑡 = Regression error term. 

Since there is a significant variation in the size of PAs and municipal utilities, the models were 

weighted by the amount of residential electricity sales to properly represent the different magnitudes of 

spending and potential savings across the PAs and municipal utilities in Massachusetts. 

Finally, the Massachusetts PAs have had residential upstream lighting programs since 1998, and 

these programs have accounted for a significant share of program-claimed savings for the PAs. The 

incentive structure of these programs does not allow for assurances that each purchaser of a program bulb 

is a residential customer in the sponsoring PA’s service territory. Therefore, some program bulbs may 

have been purchased by customers served by municipal utilities. This leakage means that some of the 

program expenditures in the neighboring area are affecting consumption in the municipal utility area.  

Based on a component of the Massachusetts Residential Customer Profile study, which allocated total 

upstream program rebate dollars to Census block groups in Massachusetts from 2010 through 2013, we 

reallocated a portion of PA electricity program expenditures to municipal utilities.  

Model Results 

Table 1 shows the coefficient estimates for the key explanatory variables from six different 

residential models.  

Table 1. Residential Model Results  

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Annual residential energy efficiency 

program expenditures per customer 

in year t 

-0.00014 

(0.0002) 

0.00038+ 

(0.0002) 

0.00031 

(0.0003) 

-0.00012 

(0.0002) 

0.00040 

(0.0002) 

0.00032 

(0.0003) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-1 

 
-0.00046** 

(0.0001) 

-0.00033 

(0.0003) 
 

-0.00049** 

(0.0001) 

-0.00037 

(0.0003) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-2 

 
-0.00028 

(0.0004) 

-0.00030 

(0.0003) 
 

-0.00029 

(0.0004) 

-0.00032 

(0.0003) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-3 

 
-0.00066* 

(0.0003) 

-0.00073** 

(0.0003) 
 

-0.00068* 

(0.0003) 

-

0.00078** 

(0.0003) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-4 

 
-0.00150** 

(0.0004) 

-0.00128** 

(0.0002) 
 

-0.00153** 

(0.0004) 

-

0.00132** 

(0.0003) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-5 

  
-0.00110 

(0.0011) 
  

-0.00111 

(0.0011) 

Annual residential energy efficiency 

program expenditures per customer 

in year t-6 

  
-0.00019 

(0.0009) 
  

-0.00023 

(0.0009) 

Estimation method FE FE FE FE FE FE 

                                                 
polynomials) time trends. This had little effect on the results. Similarly, including the indicator variables for individual years 

instead of a time trend did not result in a significant change in the model results.   
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Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Cumulative residential energy 

efficiency program expenditures per 

customer in years t-4 through t 

N/A 
-.00252** 

(0.0007) 

-.00234** 

(0.0005) 
N/A 

-.00259** 

(0.0008) 

-.00247** 

(0.0005) 

Cumulative residential energy 

efficiency program expenditures per 

customer in years t-6 through t 

N/A N/A 
-.00363** 

(0.0006) 
N/A N/A 

-.00380** 

(0.0006) 

Observations 438 422 414 438 422 414 

Within R2 0.64 0.69 0.71 0.64 0.69 0.71 

Years included 2000-2012 2000-2012 2000-2012 2000-2012 2000-2012 2000-2012 

Account for leakage of PA-

supported CFLs to municipal utility 

customers 

NO NO NO YES YES YES 

Number of utilities 35 35 35 35 35 35 

Notes: In all models, the dependent variable is the natural logarithm of annual electricity consumption per customer. All independent 

variables are in natural log forms except the variables expressed as percentages and energy efficiency program expenditure variables. 

Observations are weighted by PA/utility annual total residential sales.  + p<0.10, * p<0.05, ** p<0.01. 

 

In Model 1, current electricity consumption is modeled as a function of current-year energy 

efficiency expenditures and other factors affecting electricity consumption. While the coefficient -0.00014 

of current-year annual residential energy efficiency program expenditures per customer has the expected 

negative sign, it is not statistically significant at a 90% confidence level. This model does not capture the 

lagged impact of the energy efficiency programs on energy consumption. In addition, the impact of current 

program expenditures on current consumption could be twice as large if program expenditures were 

distributed uniformly in a given year because, in that case, each dollar of current-year expenditures would 

affect only one-half of current-year consumption. 

In Model 2, current electricity consumption is modeled as a function of current-year energy 

efficiency expenditures and those of the previous four years, as well as other factors affecting electricity 

consumption. The lagged energy efficiency expenditures included in the model capture the impact on 

current consumption of the measures installed in the previous four years, as well as the market effects. 

While all of the lagged energy efficiency program expenditure coefficients have the expected negative 

sign, the current-year energy efficiency program expenditures have a positive sign. The first- and fourth-

year lag coefficients are statistically significant at a 99% confidence level. The coefficients of energy 

efficiency program expenditures are also jointly significant at a 99% confidence level (F(5,34)=8.1, 

p=0.000). The sum of the current and four lagged energy efficiency expenditure coefficients is -0.00252 

with a standard error of 0.0007, which is also statistically significant at a 99% confidence level. The 

average annual residential electricity consumption in Massachusetts for years 2000 through 2012 was 

7,533 kWh per customer. The model results suggests that one dollar spent on energy efficiency per 

customer this year would decrease per-customer residential electricity consumption by a total of 18.98 

kWh over the next four and one-half years, with a 95% confidence interval of [8.2 kWh, 29.8 kWh] or 

4.2±2.4 kWh per year.  

In Model 3, current electricity consumption is modeled as a function of current-year energy 

efficiency expenditures and those of the previous six years, as well as other factors affecting electricity 

consumption. The third- and fourth-year lag coefficients are statistically significant at a 99% confidence 

level. The coefficients of energy efficiency program expenditures are also jointly significant at a 99% 

confidence level (F(7,34)=23.3, p=0.000). The sum of the current and six lagged energy efficiency 

expenditure coefficients is -0.00363, with a standard error of 0.0006 (significant at a 99% confidence 

level). The model suggests that one dollar spent on energy efficiency per customer this year would 

decrease per-customer residential electricity consumption by a total of 27.34 kWh over the next six and 

one-half years, with a 95% confidence interval of [18.7 kWh, 35.9 kWh] or 4.2±1.3 kWh per year.  

Models 4 through 6 repeat Models 1 through 3 except that Models 4 through 6 contain the 
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adjustments to energy efficiency program expenditures by PAs and municipal utilities to account for the 

PA-supported program bulbs that were purchased by municipal utility customers. The results indicate that 

these adjustments improve the estimates of the impact of energy efficiency program expenditures on 

consumption, but only slightly. 

The relatively long time-series data allowed us to test several finite distributed lag models to 

empirically determine the appropriate lag length. We selected the four-lag model as the most appropriate 

model through a statistical significance test.7 Among the six models whose results are shown in Table 2, 

Model 5 with a four-year lag is our preferred model because 1) it accounts for the lagged impact of energy 

efficiency program expenditures on energy consumption, 2) it accounts for the leakage of PA lighting 

program rebate dollars to municipal utility service territories, 3) the coefficients of the first, the third, and 

the fourth lag are statistically significant, and 4) the coefficients of current and lagged energy efficiency 

expenditure variables are jointly statistically significant. This being said, the fact that the six-year lag 

model produces very similar results indicates that the fixed-effects model produces stable results across 

models with different lags.  

In Model 5, the sum of the current and four lagged energy efficiency expenditure coefficients is -

0.00259. This suggests that one dollar spent in energy efficiency expenditures per customer this year 

would decrease per-customer residential electricity consumption by a total of 19.5±12.2 kWh over the 

next four and one-half years, or 4.3±2.7 kWh per year.  

A Comparison of Residential Top-down and Bottom-up Saving Estimates  

 Top-down saving estimates are not intended to replace traditional bottom-up estimates but can 

help validate them. Table 2 provides a comparison of top-down annual net saving estimates, using the 

Model 4-6 results, with the PA-reported bottom-up annual net savings in Massachusetts from 2003 

through 2012. The table shows the annual net savings estimates and the corresponding lower and upper 

bounds of the 90% confidence intervals. The table also expresses top-down estimated savings as a percent 

of the annual bottom-up saving estimates to provide a top-down to bottom-up estimate ratio. The no-lag 

model does not capture the lagged impact of the energy efficiency programs on energy consumption. The 

four- and six-lag models, respectively, account for the impact of up to four and six previous years’ 

programmatic activity on the current year’s consumption. The four-lag model, which provided the best 

statistical fit to the data, shows a top-down to bottom-up ratio of 187%, but the 90% confidence interval 

ranges from 92% to 282%.  

Table 2. Comparison of Residential Top-down and Bottom-up Estimates, 2003-2012  

Lag Structure 

Top-down Annual Net Saving Estimates 

(GWh) 

Top-down Annual Net Saving Estimates 

(% of Net Bottom-up Estimates) 

Lower 

Bound 

Point 

Estimate 

Upper 

Bound 

Lower 

Bound 

Point 

Estimate 

Upper 

Bound 

No Lag -1,366 784 2,935 -68% 39% 146% 

Four Lags 1,851 3,762 5,674 92% 187% 282% 

Six Lags 2,829 3,821 4,814 141% 190% 240% 
Notes: The source of residential electric program reported savings and expenditures is Massachusetts Division of Energy Resources’ 

(DOER’s) PARIS database. Upper and lower bounds are for a 90% confidence interval. 

                                                 
7 In this method, the way to choose the length of a lag is to start with a long lag, test the statistical significance of the 

coefficient at the longest lag—the “trailing lag”—and shorten the lag by one period if one cannot reject the null hypothesis 

that the effect at the longest lag is zero. One continues shortening the lag until the trailing lag coefficient is statistically 

significant. 
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Commercial and Industrial Model 

This section provides details on C&I model specification and presents the model results. First, we 

discuss the C&I data collected for this project. Next, we present the model specification. We then present 

and discuss the C&I model results. Finally, we present a comparison of top-down and bottom-up estimates 

of C&I net savings.  

Data Collection 

For the C&I model, the electricity consumption, price, electric program activity, and weather data 

were from the same sources as the residential model. The C&I model included data from all PAs and the 

same municipal utilities included in the residential model plus one additional municipal utility.  We 

gathered economic and firmographic data from the following sources: 

o US Census ZIP Business Patterns – Contains business (establishment) and employee 

counts by size and by North American Industry Classification System (NAICS) industry 

type, summaries by ZIP code (without industry breakdown) for employment, payroll, and 

counts by employment size.  

o Bureau of Labor Statistics – Contains annual labor force, employment, and unemployment 

counts at the town level of granularity. 

o McGraw Hill Dodge C&I New Construction Database – This database, purchased as part 

of the Massachusetts C&I Program Evaluation, contains information on project square 

footage, value, type, and location for all non-residential new construction projects in 

Massachusetts from 1996 through 2011.   

Model Specification 

As with the residential model, we specified the C&I models as a fixed-effects panel regression model. 

We first considered using C&I electricity consumption intensity—i.e., electricity use per square foot of 

floor space—as the dependent variable. However, reliable information on square footage was not available 

from the public data sources. As an alternative way of normalizing consumption across the C&I customers, 

we used C&I consumption per employee as our dependent variable in our models.8 The top-down model 

estimates C&I electricity consumption as a function of PA/utility current- and past-year C&I program 

expenditures per employee, electricity prices, weather, and economic and firmographic factors. The 

regression form used is as follows: 

log(𝐸𝐶𝑖𝑡) = 𝛽1 𝑙𝑜𝑔(𝑃𝑖𝑡) + 𝛽2 log(𝐻𝐷𝐷𝑖𝑡) + 𝛽3 log(𝐶𝐷𝐷𝑖𝑡) + 𝛽4 log(𝐸𝐼𝑁𝐶𝑖𝑡) + 𝛽5𝑁𝐶𝑖𝑡+ 𝛽6𝐸𝑀𝑃𝑖𝑡 + ∑ 𝛾𝑘

20

𝑘=1

𝑁𝐴𝐼𝐶𝑆𝑘,𝑖𝑡 +  ∑ 𝛼𝑗𝐸𝐸𝑖𝑡−𝑗 + 𝛽7𝜏𝑡 + 𝛿𝑖 + 𝜀𝑖𝑡

𝑛

𝑗=0

 

Where: 
log(𝐸𝐶𝑖𝑡) = Natural logarithm of annual consumption per employee in PA/utility service area i 

and year t; 

log(𝑃𝑖𝑡) = Natural logarithm of electricity price in 2012 dollars; 

log(𝐻𝐷𝐷𝑖𝑡) = Natural logarithm of annual heating degree days; 

log(𝐶𝐷𝐷𝑖𝑡) = Natural logarithm of annual cooling degree days; 

log(𝐸𝐼𝑁𝐶𝑖𝑡) = Natural logarithm of mean annual employment income per employee, in 2012 

dollars, computed as total annual payroll divided by total number of employees; 

𝑁𝐶𝑖𝑡 = Square footage of C&I new construction per employee; 

NAICS𝑘,𝑖𝑡 = The percent of establishments in a two-digit NAICS industry code k. The 𝛾𝑘is a 

vector of coefficients that capture the differences in building energy use by business 

type; 

                                                 
8 We also tested models in which C&I consumption was expressed as per-customer or per-establishment. The results from 

these models were comparable. 
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𝐸𝑀𝑃𝑖𝑡 = The employment rate;  
𝐸𝐸𝑖𝑡−𝑗 = Total C&I energy efficiency program expenditures per employee in PA/utility 

service area i and year t-j; 
𝜏𝑡 = Time-trend variable that is equal to 1 in 1990 and increasing by one unit annually;9 
𝛿𝑖 = PA/utility fixed effects that capture time-invariant, PA/utility-specific fixed effects 

in electricity consumption; 
𝜀𝑖𝑡  = Regression error term t. 

Model Results 

Table 3 shows the coefficient estimates for the key explanatory variables from four different C&I 

models.  

Table 3. C&I Model Results  

Variable Model 1 Model 2 Model 3 Model 4 

Annual C&I energy efficiency program expenditures per 

employee in year t 

-0.00029+ 

(0.0002) 

-0.00018 

(0.0001) 

-0.00018 

(0.0001) 

-0.00017 

(0.0001) 

Annual C&I energy efficiency program expenditures per 

employee in year t-1 

 -0.00025* 

(0.0001) 

-0.00024* 

(0.0001) 

-0.00018+ 

(0.0002) 

Annual C&I energy efficiency program expenditures per 

employee in year t-2 

 -0.00011 

(0.0002) 

-0.00009 

(0.0002) 

-0.00008 

(0.0002) 

Annual C&I energy efficiency program expenditures per 

employee in year t-3 

 -0.00036** 

(0.0001) 

-0.00033* 

(0.0001) 

-0.00026+ 

(0.0002) 

Annual C&I energy efficiency program expenditures per 

employee in year t-4 

  0.00010 

(0.0001) 

0.00011 

(0.0002) 

Annual C&I energy efficiency program expenditures per 

employee in year t-5 

   0.00044** 

(0.0001) 

Annual C&I energy efficiency program expenditures per 

employee in year t-6 

   0.00043* 

(0.0002) 

Estimation Method FE FE FE FE 

Cumulative C&I energy efficiency program expenditures 

per customer in years t-3 through t 

 -0.00091* 

(0.0004) 

  

Cumulative C&I energy efficiency program expenditures 

per customer in years t-4 through t 

  -0.00075 

(0.0005) 

 

Cumulative C&I energy efficiency program expenditures 

per customer in years t-6 through t 

   0.00029 

(0.0007) 

Observations 379 379 379 379 

Within R2 0.39 0.40 0.40 0.43 

Years Included 
2002-2012 2002-2012 2002-

2012 

2002-

2012 

Number of Utilities 36 36 36 36 

Notes: In all models, the dependent variable is the natural logarithm of annual electricity consumption per employee. All independent 

variables are in natural log forms except the variables expressed as percentages, C&I new construction, and energy efficiency expenditures 

variables. Observations are weighted by PA/utility annual total C&I sales.  + p<0.10, * p<0.05, ** p<0.01 

In Model 1, current electricity consumption is modeled as a function of current-year energy 

efficiency expenditures and other factors affecting electricity consumption. The coefficient -0.00029 of 

current-year annual C&I energy efficiency program expenditures per employee, which is statistically 

                                                 
9 We also tested specifications with non-linear (a natural cubic spline, or some second or third degree polynomials) time 

trends. This had little impact on the results.    
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significant at a 90% confidence level, suggests that a one-dollar increase in C&I program expenditures 

per employee in a given year would decrease the per-employee electricity consumption by about 0.029% 

in that year. The average annual C&I electricity consumption per employee in Massachusetts for years 

2002 through 2012 was 12,560 kWh. This suggests that one dollar spent in energy efficiency expenditures 

per employee in a given year would decrease per-employee C&I electricity consumption by a total of 3.6 

kWh in that year with a 95% confidence interval of [0.5 kWh, 6.8 kWh].  

Model 2 adds the previous three years’ energy efficiency expenditures to the specification. While 

the current and lagged energy efficiency program expenditure coefficients all have the expected negative 

sign, only the first- and third-year lag coefficients are statistically significant at a 95% confidence level. 

The coefficients of energy efficiency program expenditures are also jointly significant at a 99% confidence 

level (F(4,35)=6.63, p=0.0004). The sum of the current and three lagged energy efficiency expenditure 

coefficients is -0.00091 with a standard error of 0.0004, which is also statistically significant at a 95% 

confidence level. The model suggests that one dollar spent in energy efficiency expenditures per employee 

this year would decrease per-employee C&I electricity consumption by a total of 11.4 kWh over the next 

three and one-half years, with a 95% confidence interval of [2.55 kWh, 20.3 kWh] or 3.2±2.54 kWh per 

year.  

Model 3 adds the previous four years’ energy efficiency expenditures to the specification. While the 

current and previous three years’ energy efficiency program expenditure coefficients all have the expected 

negative sign, the fourth year’s coefficient is positive. Similar to Model 3, the first and third lag 

coefficients are negative and statistically significant. In addition, the sum of the current and four lagged 

energy efficiency expenditure coefficients is not statistically significant. 

Model 4 adds the previous six years’ energy efficiency expenditures to the specification. While the 

current and previous three years’ energy efficiency program expenditure coefficients all have the expected 

negative sign, the fourth, fifth, and sixth year’s coefficients are all positive. Moreover, the fifth and sixth 

year coefficients are statistically significant. The sum of the current and four lagged energy efficiency 

expenditure coefficients is also positive but not statistically significant.  

In general, the C&I model results were less consistent than the corresponding residential models, 

and the model fit is not as strong. We think that the C&I top-down models did not work as well as the 

residential ones for the following reasons: 

 Electricity consumption in the C&I sector when combined into a single sector is much more 

volatile than in the residential sector due to high variability in industrial consumption. 

 The economic and firmographic variables included in the models were not sufficient as exogenous 

controls. 

 Normalizing consumption by the number of customers, establishments, or employees may not 

work as well as normalizing it by the square footage of floor space.  

A Comparison of C&I Top-down and Bottom-up Saving Estimates  

Table 4 provides a comparison of top-down annual net saving estimates, using the Model 4-6 

results, with the PA-reported bottom-up annual net savings in Massachusetts from 2003 through 2012. 

The three-lag model, which provided the best statistical fit to the data, shows a top-down to bottom-up 

ratio of 101%, and the 90% confidence interval ranges from 28% to 174%. The fact that C&I models with 

different lag lengths produce different results is expected given that consumption in the C&I sector is 

more volatile than that in the residential sector and the customer base is more heterogeneous. 
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Table 4. Comparison of C&I Top-down and Bottom-up Estimates, 2003-2012  

Lag Structure 

Top-down Annual Net Saving Estimates 

(GWh) 

Top-down Annual Net Saving Estimates 

(% of Net Bottom-up Estimates) 

Lower 

Bound 

Point 

Estimate 

Upper 

Bound 

Lower 

Bound 

Point 

Estimate 

Upper 

Bound 

No Lag -501 3,727 7,956 -15% 112% 240% 

Three Lags 925 3,342 5,758 28% 101% 174% 

Four Lags -207 2,142 4,491 -6% 65% 136% 

Six Lags -2,850 -573 1,703 -86% -17% 51% 
Notes: The source of C&I electric program reported savings and expenditures is Massachusetts Division of Energy Resources’ 

(DOER’s) PARIS database. Upper and lower bounds are for a 90% confidence interval. 

Study Results and Conclusions 

While the findings from this pilot study are preliminary, initial model results look promising as an 

alternative method that may potentially support and help validate the bottom-up estimates of net savings. 

While the preliminary indicators suggest that the program effects identified by bottom-up approaches were 

real and may even understate the program-induced savings in Massachusetts, further research is needed 

to explore the stability and sensitivity of the model results.  

The study also draws attention to an inherent limitation of top-down methods. While our models 

were able to detect energy savings, they were not estimated precisely. The confidence intervals around the 

top-down estimates of savings were quite large. If the further research establishes that the results are stable 

against alternative model specifications, then we recommend exploring ways to reduce the width of the 

confidence intervals around the estimates. 
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