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ABSTRACT 

When fitting statistical models to data that span multiple geographic areas for an evaluation, the 

researcher often prefers to provide both an overall regional savings or consumption estimate and a 

separate estimate for each individual area represented in the data. This works well when each area is 

represented by a large sample. However, project budgets and time often dictate smaller sample sizes 

which may be insufficient in some areas. In this scenario, the evaluator is faced with a handful of 

options about what data to use to report an estimate in the under-represented areas.  

This paper presents a more attractive alternative using hierarchical regression models to obtain 

both overall and area-specific estimates for the data structure described above. Under the distributional 

assumptions of this approach, the model is able to use the information from each area to form the basis 

for the estimate in that area, while also borrowing information from each of the other areas in the study 

to help inform the estimate. In this way, the authors obtain more robust estimates than would have been 

the case had they fit separate models to each area, yet also allowed each area to maintain its own unique 

characteristics in the model. The study, one of the largest metering studies of its kind, relied on a sample 

of over 4,600 loggers from 845 homes across four states. Other regional evaluations may wish to 

consider the approach, increasing opportunities to leverage resources while preserving information on 

individual areas.   

Background 

The Northeast Residential Lighting HOU study was designed as one of the largest and most 

comprehensive residential lighting HOU studies every conducted. Owing to the complexity and 

comprehensiveness of the study, this paper is one of three companion papers presented at IEPEC Long 

Beach 2015. This paper focuses on modeling techniques and methods. Each of the other two papers also 

has a specific focus; as such, this paper makes references to material that is covered in more depth in the 

companion papers:   
 A Lighting Study to Stand the Test of Time: Exploring the Results of a Residential Lighting 

Study Designed to Produce Lasting Data, Barclay, et al., focuses on overall approaches and 

results. 

 What Light through Yonder Window Breaks? Methods to Study the Effects of Urban Canyons 

on Lighting Usage, Walker, et al., focuses on the results of solar shading analysis performed 

for high-rise apartments in Manhattan.  

Overview 

The objective of this study was to provide updated load shapes, coincidence factors (CFs), and 

HOU estimates for the Connecticut Energy Efficiency Board (in cooperation with Eversource and 

United Illuminating), the Massachusetts Electric Program Administrators (Cape Light Compact, 
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National Grid Massachusetts, Eversource, and Unitil), National Grid Rhode Island, and the New York 

State Energy Research and Development Authority (hereafter “the Sponsors”) to assist in the 

calculations of demand and energy savings for lighting programs.  

While all of the Sponsors were involved in project design and oversight, funding levels varied. 

As such, the number of households included in the final sample also varied greatly. Massachusetts and 

New York each contributed over 300 homes for inclusion in the study (Table 1), Connecticut and Rhode 

Island provided fewer than 100 each. Differences were based on available funding and the ability of 

Massachusetts and New York to leverage the resources of multiple previously planned saturation studies 

(NMR Massachusetts 2013, NMR New York 2013). Note that the study examines Upstate and 

Downstate New York separately and also provides estimates specific to Manhattan.  

 

Table 1. Sample by State  

Area Homes 
Loggers 

Modeled 

Connecticut 90 549 

Massachusetts 398 2,175 

New York 319 1,686 

Rhode Island 41 232 

Total 848 4,642 
 

Key Takeaways 

This paper concentrates on the methods specific to the modeling of HOU estimates, focusing on 

the potential benefits of using hierarchical modeling under certain conditions. Also known as “multilevel 

models,” hierarchical models provide a method for analyzing clustered, multilevel data (Fitzmaurice, 

Laird, & Ware 2011). In the case of this study, the levels include bulbs in rooms, rooms in homes, 

homes in states, and states in regions, with the last level being the most critical for this paper. The 

advantage of hierarchical modeling is that it produces cluster-specific results but also takes information 

from the aggregated data into account (Stevens 2007). Thus, researchers gain both an understanding of 

the unique nature of each cluster without losing the additional information gained by looking at the 

study group as a whole.  

Additional details on sample recruitment and data collection can be found in the companion 

paper also being presented at IEPEC 2015 (Barclay et al.). Key takeaways from this paper include the 

following: 

 

 Hierarchical modeling can serve as a tool to improve estimates for each individual area in a 

larger regional study. Under certain conditions, including but not limited to individual areas 

exhibiting similar estimates, researchers may be able to use information from the entire 

sample to inform and improve estimates from the others. Given the time and cost of 

conducting metering studies, when appropriate, hierarchical models allow numerous program 

administrators within a region to pool resources that provide for a strong estimate at both the 

regional and area-specific levels.  

 Hierarchical modeling is most beneficial to those specific areas with smaller sample sizes. 

Smaller sample sizes lead to higher standard errors and wider confidence intervals. By 

drawing on regional information to inform an area-specific estimate, hierarchical modeling 

reduces standard errors and narrows confidence intervals.  
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Data Preparation 

The authors took several steps to prepare the data prior to fitting statistical models to estimate 

HOU. The steps include data cleaning, understanding reasons for sample attribution, and outlier 

detection. This section also addresses the time period addressed in this study.  

 

Data Cleaning, Sample Attrition, and Outlier Detection 

 

The team originally installed 5,730 loggers, but, as is common in studies of this size, some attrition 

took place due to loggers being damaged, stolen, or being otherwise unrecoverable. In total, the authors 

obtained data for 5,494 loggers—2,627 specifically placed for the HOU study (hereafter, “the base 

study”) and 2,867 from the following three studies combined: the Massachusetts Low-Income Study, the 

National Grid NY EnergyWise Study, and the NYSERDA High-Rise Study. For each logger, the HOU 

for each day of the study period was calculated.  

Analysts performed quality assurance and quality control on the daily logger data. While some 

loggers did record very high or low usage over the study period, the percentage of these loggers was 

small. In addition, it is reasonable to expect that different households can exhibit very different usage 

patterns for any number of reasons, and it is not unlikely that the loggers exhibiting higher than ordinary 

usage represent some small portion of the actual population. Therefore, authors adopted a very 

conservative approach, and the only loggers removed were those for which it was not reasonable to 

assume the recorded data were correct—namely, those that exhibited obvious flickering or that were on 

continuously for over three consecutive weeks and whose unexpectedly high observed usage did not 

agree with self-reported usage for the bulb in question. Preliminary data cleaning ultimately resulted in 

the removal of 364 loggers, leaving 5,130 loggers across all areas. 

Of the 5,130 loggers included after cleaning, an additional 488 loggers were dropped because they 

were missing one or more of the other variables (e.g., demographic characteristics) that contributed to 

the regression analysis, or because the logger ID could not be correctly matched to the on-site data. This 

left us with a total of 4,642 loggers for analysis.  

 

Logging Period 
 

Figure 1 shows when the loggers included in the final analysis (4,642 loggers) were deployed. 

February through July of 2013 (six months) marked the period with the greatest number of loggers 

deployed, and a substantial number of loggers (greater than 1,500) were in the field in each month from 

December 2012 through July 2013 (eight months). On average, loggers were installed for 143 days, with 

84% of loggers in the field for at least 121 days and 31% in the field for at least 151 days. Loggers were 

installed on average for the following number of days in each area: CT – 147 days, MA – 145 days, RI – 

216 days, Upstate NY – 123 days, and Downstate NY – 132 days. 

This approach to logging a partial year is consistent with the guidelines recommended by the 

Uniform Methods Protocol for upstream lighting programs (Dimetrosky). According to the protocols,  

 

Due to the seasonality of lighting usage, logging should (1) be conducted in total for at least six 

months and (2) capture summer, winter, and at least one shoulder season—fall or spring. At a 

minimum, loggers should be left in each home for at least three months (that is, two waves of 

three-month metering will attain six months of data). All data should be annualized using 

techniques such as sinusoidal modeling to reflect a full year of usage. 
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Figure 1. A Substantial Number of Loggers were in the field December 2012 through July 2013 

HOU Modeling 

 

Developing HOU estimates consisted of three modeling steps: 1) Creating annual datasets, 2) 

Adjusting HOU estimates, and 3) Applying a hierarchical model. 

 

Creating Annual Data Sets  
 

Since each logger was installed for only a portion of the year, analysts had to annualize the data. 

This was accomplished by fitting a sinusoid model individually to each logger. Authors drew upon the 

methods outlined in past studies (KEMA & Cadmus 2010) and NMR and DNV GL (2014) detail the 

approach used in the current study. In summary, the authors fitted separate weekend and weekday 

models for each logger. For any loggers not conforming well to the sinusoid model, the analysts took 

additional steps to prepare annualized estimates based on average daily usage over the period logged 

(described below). The sinusoid model for each logger took the following form:  

 

hd = α + βsin(θd) + εd 

Where 

hd = hours of use on day d, 

θd = angle for day d, where θd is 0 and the spring and fall equinox, π/2 for d = December 21, and 

-π/2 for d = June 21, 

α and β are regression coefficients,  

εd is the residual from the regression. 
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In each model, α represents the average weekday (or weekend day) use for a given logger. 

Because the authors fitted a weekday model and a weekend model for each logger, the overall average 

usage for the year for each logger represented the weighted average of the α from the weekday model 

and the α from the weekend model. After assessing the goodness of fit and assigning average yearly 

values to poor fitting models (NMR & DNG GL 2014), the authors then calculated the overall average 

annual daily hours of use for each logger by averaging the weekend and weekday specific averages in 

proportion to the number of weekend/weekday days over the course of the year. Specifically: 

𝑎𝑣𝑔. ℎ𝑜𝑢𝑖 =
(𝑛𝑤𝑑𝛼𝑤𝑑,𝑖 + 𝑛𝑤𝑒𝛼𝑤𝑒,𝑖)

𝑛𝑤𝑑 + 𝑛𝑤𝑒
 

 

Where i indexes each logger, nwd is the number of weekdays over the year, nwe is the number of 

weekend days over the year, αwd,I is the average weekday usage for logger i, and αwe,I is the average 

weekend usage for logger i.  

After annualizing the data for each logger, the authors merged logger data with household 

demographic data. Household demographic data included information on education level, income, 

single- or multifamily status, own/rent status, and whether there was anyone under 18 years of age in the 

household. 

As described in the full report (NMR & DNV GL 2014), the model performed well for most 

loggers, and the average amplitude of the sine curve across all good-fitting models (the average estimate 

of the slope term, β) was very similar to those of other comparable studies, suggesting that the overall 

effect of season is relatively similar in the two regions. Average estimates for poor-fitting models were 

more extreme in absolute value and exhibited much higher uncertainty than their good-fitting 

counterparts, again consistent with previous studies.  

Adjusting HOU Estimates 

 

Next, the authors used the annualized estimates as the dependent variable in a weighted 

regression analysis to estimate the adjusted average HOU for each room in each area of the study. Table 

2 on the next page describes the variables that contributed to the regression analysis as predictors. 

The authors retained variables in the model if they were statistically significant at 90% 

confidence, allowing for a more parsimonious model. The authors made two exceptions to this rule: they 

retained income level and housing type despite the lack of statistical significance, as one of the goals of 

this study was to quantify the association between usage and income/housing type.1  

At this point in the process, the model used only loggers for each individual area to develop area-

specific estimates, while the regional model included all loggers in the study. Based on outputs from this 

model, the results indicated that Connecticut, Massachusetts, Rhode Island, and Upstate New York 

exhibited comparable usage patterns, while those for Downstate New York (including Manhattan) 

differed from the other areas. Table 3 on the next page presents the HOU estimates from these area-

specific regressions. 

                                                 
1
 Additional variables considered for inclusion in the model that did not prove to be statistically significant included 

saturation, fixture type, bulb shape, socket type, and control type.  
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Table 2. Variables Used as Predictors in HOU Regression Models  

Variable Description Levels 

Room Type Room/location the bulb was located. 

Bedroom 

Bathroom 

Kitchen 

Living Space 

Dining Room 

Exterior 

Other 

Efficient Bulb Whether the bulb was efficient or non-efficient. 
Yes 

No 

Income Household income. 
Low Income 

Non-Low Income 

Education Education level of the respondent. 

Less than High 

School 

High School or GED 

Some College 

Bachelor’s Degree 

Advanced or 

Graduate Degree 

Rent/Own Whether household is owned or rented 
Rent 

Own 

Under 18 Anyone under 18 years of age in the household 
Yes 

No 

Home Type Single or multi-family residence 
Multi Family 

Single Family 

 

Table 3. Overall Estimated HOU from Preliminary Models  

Area Estimated Overall 

HOU 

90% Confidence 

Interval 

Connecticut 2.9 (2.5, 3.2) 

Massachusetts 2.6 (2.4, 2.8) 

Rhode Island 2.9 (2.2, 3.5) 

Upstate New York 2.4 (2.1, 2.8) 

Downstate New York 4.1 (3.5, 4.7) 

Manhattan 3.9 (3.4, 4.4) 

 

Applying Hierarchical Model  

 

Due to the similar use patterns in Connecticut, Massachusetts, Rhode Island, and Upstate New 

York, the authors sought a way to leverage data from them to refine area-specific estimates. The team 

treats Downstate New York and Manhattan differently, as described below. The structure of the data—

loggers nested in homes, nested in areas—is well suited for a multi-level hierarchical model. This 

modeling approach offers the advantage of using information from all four areas to help inform area-

specific estimates. In a hierarchical model, the observations specific to an area form the basis of the 

estimates for that area, while observations from outside that area also inform and help refine the area-

specific estimates (Cnaan, Laird, & Slasor 1997, Fitzmaurice, Laird, & Ware 2011). Figure 2 provides a 
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visual representation of how the estimate for Rhode Island is informed by loggers in Connecticut, 

Massachusetts, and Upstate New York. The hierarchal model particularly benefits areas that had fewer 

loggers installed, thus providing more refined (tighter precision and adjusted means) HOU estimates 

compared to individual models fit to each area separately. 

 

 

Figure 2. Illustration of Hierarchical Model 

 

To account for potential correlation among loggers in the same household or area (e.g., HOU 

may be correlated based on when people leave or return to their home, or go on vacation), the model 

included a random intercept term at the site ID level, dependent on the area in which the site ID is 

nested. This dependence is established at another level in the modeling framework. Additionally, to 

estimate area-specific HOU estimates for all rooms, the model included random area-specific regression 

coefficients for the room type variable, allowing for information from other areas to help inform the 

area-specific HOU estimate of each room. Premise and room weights were applied directly in the 

likelihood of the model (Graubard & Korn 1996, Rabe-Hesket & Skrondal 2006). The exact form of the 

hierarchical model is presented below. 
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𝐸(ℎ𝑜𝑢𝑖𝑗𝑘) = (𝛽0 + 𝑏0,𝑗) + (𝛽1 + 𝑏1,𝑘) × 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚) + (𝛽2 + 𝑏2,𝑘)

× 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝐵𝑒𝑑𝑟𝑜𝑜𝑚) + (𝛽3 + 𝑏3,𝑘) × 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝐷𝑖𝑛𝑖𝑛𝑔) + (𝛽4 + 𝑏4,𝑘)

× 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝐾𝑖𝑡𝑐ℎ𝑒𝑛) + (𝛽5 + 𝑏5,𝑘) × 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝐿𝑖𝑣𝑖𝑛𝑔) + (𝛽6 + 𝑏6,𝑘)

× 𝐼(𝑅𝑜𝑜𝑚𝑖𝑗𝑘 = 𝑂𝑡ℎ𝑒𝑟) + 𝐼(𝐵𝑢𝑙𝑏. 𝑡𝑦𝑝𝑒𝑖𝑗𝑘 = 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) + 𝛽8𝐼(𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑗𝑘 = 𝐿𝐼)

+ 𝛽9𝐼(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑘 = 𝐻𝑆) + 𝛽10𝐼(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑘 = 𝑆𝑜𝑚𝑒 𝑐𝑜𝑙𝑙𝑒𝑔𝑒)

+ 𝛽11𝐼(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑘 = 𝐵𝑎𝑐ℎ. ) + 𝛽12𝐼(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑘 = 𝐴𝑑𝑣/𝐺𝑟𝑎𝑑 𝐷𝑒𝑔. )

+ 𝛽13𝐼(𝑂𝑤𝑛/𝑅𝑒𝑛𝑡𝑖𝑗𝑘 = 𝑅𝑒𝑛𝑡) + 𝛽14𝐼(𝑈𝑛𝑑𝑒𝑟18𝑖𝑗𝑘 = 𝑦𝑒𝑠)

+ 𝛽15𝐼(𝐻𝑜𝑚𝑒. 𝑡𝑦𝑝𝑒𝑖𝑗𝑘 = 𝑀𝐹) 

 

Where i indexes the loggers, j indexes the homes, k indexes the areas, and: 

𝑏0,𝑗 ~ 𝑁(𝑏𝑘, 𝜎𝑏𝑘

2 ),   ∀𝑠𝑖𝑡𝑒𝑗 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛𝑘 ∀𝑘, 

𝑏𝑘 ~ 𝑁(0, 𝜎𝑟𝑒𝑔
2 ),   𝑓𝑜𝑟 𝑘 = 1, … , 𝑛𝑟𝑒𝑔𝑖𝑜𝑛𝑠, 

𝑏𝑙,𝑘 ~ 𝑁(0, 𝜎𝑙
2),   𝑓𝑜𝑟 𝑙 = 1, … ,6 𝑎𝑛𝑑 ∀𝑘,  

 

Table 3 above shows that Downstate New York (including Manhattan) and Manhattan by itself 

had different usage patterns—specifically, higher HOU—than the other four areas in the study.2 Thus, 

separate robust linear regression models were fit for Downstate New York, for the subset of Downstate 

New York in Manhattan, and for all of the NYSERDA area (all of Upstate and Downstate combined). 

Downstate regression models incorporated the same variables listed above. After fitting the regression 

models, the authors used the fitted values of the appropriate regression to calculate adjusted HOU 

estimates by area and room.  

For all areas, the authors also fitted models for eight sub-categories based on home type (single 

vs. multifamily) and income level (low-income vs. all others) and the mixture of the two. Again, they 

fitted a hierarchical model with data from Connecticut, Massachusetts, Rhode Island, and Upstate New 

York but treating Downstate New York and Manhattan separately within each sub-category. The authors 

urge the reader to review these models in the full study. 

 

 Regression Model Coefficients 
 

Table 4 shows the overall regression coefficients from the hierarchical model fitted to all loggers 

in Connecticut, Massachusetts, Rhode Island, and Upstate New York. These coefficients were relatively 

consistent across models, so the table only presents the overall hierarchical model coefficients. Not only 

does the hierarchical model allow information from across regions to help inform each region-specific 

estimate, it also performs better than its non-hierarchical counterpart. The pseudo-R
2
 for the overall 

hierarchical regression model, as calculated according to Xu (2003), is 0.26, compared to an R
2
 value of 

0.14 for the stand-alone regression model fit at the overall level, suggesting a nearly two-fold 

improvement in the amount of explained variance from fitting a standard linear regression model to this 

data. Blank cells in this table represent the baseline level of each variable in the model, and all 

coefficients should be interpreted as relative to the corresponding baseline level for each variable. For 

example, controlling for other factors, efficient bulbs were used for about 0.6 hours more than less 

efficient models,3 and renters used bulbs for about 0.5 hours more than owners did.  

                                                 
2
 We do not present Downstate New York minus Manhattan due to the NYSERDA program structure. They treat 

Downstate—comprising all of New York City, most of Westchester County, and a few towns in other counties—as one unit 

in their program planning and implementation. 
3
 This coefficient—and a discussion of “take back”—is addressed in the companion paper: A Lighting Study to Stand the Test 

of Time: Exploring the Results of a Residential Lighting Study Designed to Produce Lasting Data, Barclay, et al. also 

presented at the 2015 IEPEC. This paper—as well as the full study report—provide more detail on these coefficients and on 
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Table 4. Overall Regression Coefficients from Hierarchical Model  

Variable Level Coefficient 
90% Confidence 

Interval* 

Efficient Bulb 
Yes 0.631 (0.455, 0.806) 

No   

Income 
Low Income 0.007 (-0.261, 0.273) 

Non-Low Income   

Education 

Grad/Adv. Degree -0.635 (-1.288, -0.082) 

Bachelor’s Degree -0.587 (-1.253, -0.019) 

Some College -0.778 (-1.420, -0.248) 

HS or GED -0.728 (-1.362, -0.176) 

Less than HS   

Own/Rent 
Rent 0.532 (0.249, 0.821) 

Own   

Under 18 
Yes 0.598 (0.362, 0.824) 

No   

Home Type 
Multi Family -0.157 (-0.470, 0.154) 

Single Family   

* Intervals that do not contain zero correspond to statistical significance at 90% confidence. 

 

HOU Estimates and Confidence Intervals Derived from Hierarchical Models 
 

Figure 3 compares the hours of use estimates and confidence intervals derived from the 

preliminary models and the hierarchical models. These estimates include all bulbs in the home; as noted 

above use varied between efficient and inefficient bulbs, with efficient bulbs seeing more use.4 While 

the point estimates change very little between models within the state, the confidence intervals derived 

from the hierarchical models are considerably tighter than those developed from the preliminary models. 

Thus, taking advantage of additional information from other similar areas allowed the authors to reduce 

standard errors, thereby yielding estimates with a smaller error band around them. Note that the 

estimates for Downstate New York and Manhattan did not change from those reported in Table 3 as they 

were not included in the hierarchical modeling effort.  

This approach clearly has the most impact on reducing the standard error for the two areas with 

the fewest loggers, namely Connecticut and Rhode Island. However, it is worth noting that the error 

band in Rhode Island remains larger even after fitting the hierarchical model than that of the other states; 

this reflects the small number of loggers in that state compared to the others. This fact serves to 

emphasize that, while the approach certainly assists in narrowing confidence intervals for areas with 

fewer loggers, it still requires an adequately large sample size—and Rhode Island just made the cut for 

this analysis.  

 

                                                                                                                                                                         
the issue of take back.  
4
 A Lighting Study to Stand the Test of Time: Exploring the Results of a Residential Lighting Study Designed to Produce 

Lasting Data, Barclay, et al., also presented at the 2015 IEPEC, addresses these issues in more details. 
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Figure 3. Comparison of Preliminary and Hierarchical HOU Estimates and Confidence Intervals 

 

Conclusions 

The research described in this paper provided area-specific and regional estimates of HOU for 

numerous residential lighting program administrators in the Northeast, with recommended HOU 

estimates ranging from 2.6 for Rhode Island and Upstate New York to 4.1 for Downstate New York. 

However, the focus of this paper was not on the estimates themselves but on the statistical modeling 

approach the evaluators used to derive them.5 Importantly, by fitting the data to a hierarchical model, the 

authors succeeded in producing estimates that used logger data from the individual area and the region 

overall. This not only means that the resulting HOU estimates took more information into account, but it 

also reduced the standard error for each area, ultimately narrowing the confidence intervals. The 

approach provides the most benefit to areas with smaller sample sizes. The successful application of this 

approach suggests that future evaluations that rely on statistical modeling may want to explore the use of 

hierarchical models, particularly when the study requires that they produce estimates for individual areas 

as well as an overall estimate. The approach also provides program administrators with smaller budgets 

to pool resources into a larger study rather than expending limited evaluation resources on individual, 

expensive studies that may still lack adequate sample sizes to meet desired levels of confidence and 

precision.  

 

 

 

                                                 
5
 See A Lighting Study to Stand the Test of Time: Exploring the Results of a Residential Lighting Study Designed to Produce 

Lasting Data, Barclay, et al., focuses on overall approaches and results also presented at the 2015 IEPEC for details on the 

study and the results.  
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