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ABSTRACT 
 

In 1998 the EPA introduced its ENERGY STAR building benchmarking score for Office 
buildings as part of a broad set of initiatives to promote efficient use of energy.  Since then the EPA has 
developed benchmarking scores for a total of 12 conventional building types.    The central feature of 
the ENERGY STAR methodology is a multivariate regression performed on a nationally representative 
sample of buildings of a particular type.  This regression is used to adjust the energy used by a building 
for external factors identified by the EPA that drive building energy use.  The EPA has never published 
evidence that these regressions are valid for buildings outside the sampled datasets. So called validation 
is a crucial step for making use of any such regression results. 

Here we report results for validation tests performed on seven of the ENERGY STAR building 
models that are based on CBECS data.  For six of these, external validation was accomplished by 
constructing equivalent model datasets from a different vintage of CBECS from that used by the EPA.  
For the seventh model (Supermarket/Grocery Store) an internal validation method was employed.  One 
model (Office) passes validation indicting its weighted regression is largely reproducible.  In contrast, 
four models (Worship Facility, Supermarket/Grocery, Warehouse, and K-12 Schools) fail validation 
suggesting the opposite and casting doubt on the utility of ENERGY STAR scores for these buildings.  
Validation tests for the other two models (Hotel/Motel and Retail Stores) yield intermediate results 
indicating some consistency yet with large uncertainties in their ENERGY STAR scores.  

 
1. Introduction 
 

Building energy benchmarking is a process in which the energy used by a particular building is 
compared with the energy used by other, similar buildings.  Historically, benchmarking provides a 
simple method for a building portfolio manager to identify the poorly-performing buildings which are 
most likely to benefit from energy-efficiency upgrades.  More recently energy benchmarking scores 
have been cited for building portfolios as evidence for energy savings (EPA 2012, USGBC 2012).  As 
larger buildings use more energy than smaller buildings the preferred metric for building energy use is  
the annual energy use intensity (e) or EUI, calculated by dividing a building’s annual energy use (E) by 
its gross floor area (A), namely e = E/A.  A building’s annual site energy is readily determined by 
totaling monthly energy purchases after first converting fuel quantities to a common energy unit, 
typically British thermal units (Btu) or mega Joules (MJ). 

Building site energy, however, fails to account for the off-site energy losses incurred in 
producing the energy and delivering it to the building, particularly important for electric energy.  The 
U.S. Environmental Protection Agency (EPA) defines building source energy to account for both on- 
and off-site energy consumption associated with a building.   Source energy is calculated by totaling 
annual energy purchases after multiplying each by a fuel-dependent, national-average site-to-source 
energy conversion factor (EPA 2011).  In this paper all references to building energy (or EUI) refer to 
source energy (or source EUI). 

Energy benchmarking is done by building type.  Hospitals, for instance, use more energy than 
warehouses so it makes no sense to compare the two.  Once a building type has been chosen the next 



 
 

step in developing a benchmarking scale is to obtain energy performance data for a statistically 
significant number of buildings of this type that adequately characterize the target building stock.  The 
EPA has developed energy benchmarking scores for 12 conventional types of buildings listed in Table 1.  
For each building type the target stock is a subset of the national building stock that meet certain specific 
criteria listed in Technical Methodology documents published for each building type (EPA 2015).  Most 
of the EPA building models rely on data obtained from one of the Energy Information Administration’s 
Commercial Building Energy Consumption Surveys (CBECS).1  The three most recent surveys were 
conducted for 2003, 1999, and 1995.  For three building types the EPA has relied instead on data 
obtained from industry surveys conducted by or in collaboration with a relevant trade organization (see 
Table 1).  The EPA revises its building models over time.  Table 1 lists the latest revision date, the 
source of model data, the number of samples (n) in the model dataset and the estimated number of 
buildings in the target building stock they represent (N).  Also listed are characteristics of the EPA 
model regressions (discussed below).  

 

 
Table 1. Table summarizing models for 12 conventional building types. n is the number of samples in 
the regression dataset, N is the number of U.S. buildings they represent, and R2 is the goodness of fit for 
the model regression using m independent variables. 
 

There are various ways one might compare the EUI of a particular building to the distribution of 
EUI obtained for the target comparison building stock.  The drawback with such direct comparisons is 
that annual energy use and EUI are affected by external factors that have nothing to do with energy 
efficiency – factors such as climate, weekly hours of operation, and numbers of employees.  The EPA’s 
ENERGY STAR benchmarking system attempts to identify and adjust for such external factors.  For a 
particular building type the EPA has searched through the model data to identify as many as m (an 
integer ranging from 1-11 depending on the building type) external factors  1 2, ,..., mx x x that correlate 

with EUI (e).  This process is mostly driven by statistical significance and data availability rather than 
any underlying engineering model.  The EUI data in the model dataset are fit with a weighted, 
multivariate linear regression on these m-independent variables obtaining regression coefficients 

 0 1, ,..., ma a a .  The R2 goodness of fit for these regressions and the number of fit parameters (m) are 

listed in Table 1.  The EPA defines the Energy Efficiency Ratio (EER) EER e p , where

                                                            
1 CBECS uses a stratified random sampling technique in which the j‐th observation in the survey is associated with a weight 
(wj) that indicates the number of buildings in the U.S. commercial building stock represented by this sample. 



 
 

0 1 1 ... m mp a a x a x    is the EUI predicted for a building by the regression formula based on a 

building’s external parameters.  A building with REE < 1 uses less energy than predicted and is judged to 
be energy efficient while a building with REE > 1 is the opposite.  The EPA uses its regression to 
calculate predicted EUI (p) for all buildings in the model dataset, combines these with actual e to 
calculate EER values, sorts the dataset in order of increasing EER, and finally combines these with the 
building weights to generate a cumulative EER distribution for the target building stock these buildings 
represent.  The EPA fits this cumulative EER distribution with a 2-parameter cumulative gamma 
distribution, adjusting fit parameters  and  to obtain the best fit (EPA 2015). 2  The ENERGY STAR 
score is then given by   100 1 , ,EES GammaDist R    . 

S is interpreted as the percentage of the target building stock that has higher EER (lower energy 
efficiency) than that of the building being scored.  Assuming that all of the above steps are valid an 
ENERGY STAR score of 75, the minimum required to receive ENERGY STAR certification, means 
that a building has a lower EER than 75% of similar buildings nationally.  The EPA has developed a 
web-based database/calculation tool called Portfolio Manager that performs this complicated calculation 
to generate the ENERGY STAR score for a particular building based on user-supplied building 
information. 

Clearly a building’s EER may be lowered by either decreasing e or increasing p. All else being 
equal the former represents improved energy efficiency.  But can the same be said regarding reductions 
in EER associated with increases in p?  Any error or uncertainty in p will produce error in REE and 
hence the associated ENERGY STAR score (S).  Regression coefficients are necessarily uncertain and, 
given the low R2 for most models (see Table 1), these uncertainties are significant.  The EPA’s 
Technical Methodology documents for each of its ENERGY STAR building models lists standard errors 
for their regression coefficients but these documents do not discuss their impact on ENERGY STAR 
scores (EPA 2015).  The resulting uncertainties in ENERGY STAR scores have been estimated to be 
±35 points (Scofield 2014).  David Hsu has estimated uncertainties in Office ENERGY STAR scores to 
be ±15 points (Hsu 2014).  Such large uncertainties blur the distinction between an ENERGY STAR 
certified building (S = 75 or greater) and the median building (S = 50). 

In this paper we address a different, yet very important question regarding the EPA’s regressions.  
Are the trends uncovered in a particular model dataset unique to that small subset of buildings – perhaps 
even coincidental – or are they characteristic of the larger building stock from which the samples are 
drawn?  The EPA clearly assumes the latter.  But what evidence supports this assumption?  Convincing 
proof of this assumption is obtained by applying the same regression to a second, independent sample of 
buildings drawn from the same larger building stock.  If the results of this second regression are similar 
to those of the first the regression is validated.  If not then we have little confidence in the 
reproducibility or accuracy of predicted EUI and their impact on Energy Efficiency Ratios or ENERGY 
STAR scores. 

 
2. Regression Validation Procedure 
 

Nine of the conventional ENERGY STAR building models are based on CBECS data (see 
Table 1).  Each vintage of CBECS (1995, 1999, 2003, and the yet to be released 2012) provides an 

                                                            
2 For the two oldest models, Medical Office and Residence Hall/Dormitory, the EPA’s methodology was significantly 
different.  For these models the EPA performed non‐weighted regressions and used the natural log of the source energy, 
LnE, rather than EUI, as the dependent regression variable.  The EER was taken to be the ratio of the actual LnE to the 
predicted LnE.  The EPA further did not utilize CBECS weights in determining the cumulative EER distribution and 
corresponding ENERGY STAR score lookup tables. 



 
 

independent snapshot of the U.S. commercial building stock.  CBECS data since 1992 show that the 
commercial building stock has experienced an average growth rate of 1.7% per year (in gross square 
feet) with no significant change in gross site EUI.  Thus it would appear that CBECS data from a 
different vintage from the one used by the EPA would provide independent data for externally validating 
an ENERGY STAR model regression.  The Medical Office and Residence Hall/Dormitory models are 
based on 1999 CBECS.  2003 CBECS data, then, offer the opportunity to externally validate these 
models.  External validation of these models is discussed elsewhere (Scofield 2014). 

Six building models are based on 2003 CBECS data.  Older, 1999 CBECS data provide 
opportunities to externally validate these models.  The validation process is as follows.  First we follow 
the EPA’s methodology to extract their model data (dataset A) from the 2003 CBECS dataset, calculate 
source EUI, and replicate the EPA’s weighted regression.  Next, an independent model dataset (dataset 
B) is extracted from CBECS 1999 by applying the same data filters used by the EPA for the original 
CBECS 2003 model dataset.  Source EUI are calculated for each building in this new dataset using the 
same site-to-source conversion factors used for the EPA model dataset.  The EPA’s weighted regression 
is then performed on the new dataset.  The results of the new regression (statistical significance and 
values for regression coefficients) are compared with the EPA’s results.  The crucial test is to compare 
the predictions of these two regressions.  Regression coefficients from the EPA’s analysis (A) and from 
the new dataset (B) are used to calculate two different predicted EUI values (pA and pB) for each 
building in one or both datasets.  A graph of pB vs pA is used to assess the agreement in the two 
predictions.  A diagonal line (pB = pA) shows excellent agreement while random scatter shows little 
agreement.  The overall agreement is quantified by calculating the coefficient of determination, R2.3  
 
3. Validation Results 
  

External validation of the Medical Office and Residence Hall/Dormitory models has been 
discussed elsewhere (Scofield 2014).  Both models failed these tests, suggesting that the regression 
results were not reproducible.  In both cases the underlying problem is that the model datasets are simply 
too small to characterize their respective building stocks with sufficient accuracy to be of use for such 
analysis.  

Below we describe the validation tests and their results for the remaining seven ENERGY STAR 
building models.  For four of these difficulties arose in applying the EPA’s filters to 1999 CBECS data 
due to slight differences in the 1999 and 2003 CBECS surveys.  For each of these models we were able 
to find a work-around that allowed for an “apples-to-apples” comparison.  The details are discussed 
below.  We begin by discussing results for Worship Facilities and Hotels/Motels which were free of 
these problems. 

3.1 Worship Facilities and Hotel/Motel 

First consider the Worship Facility model (EPA 2015/Worship).  Our replication of the EPA’s 
weighted regression (A) yielded a total R2 of 39%.  Dataset B contained nB = 214 records corresponding 
to an estimated NB = 250,000 buildings in the 1999 building stock.  Regression B on this dataset yielded 
a total R2 = 18%.  The t-values and regression coefficients for the two regressions (A and B) showed 
marked differences. 

                                                            
3 Technically, the regression weights should be used to calculate weighted R2 values.  We, instead, provide un‐weighted R2 
values as they correspond to the actual pB vs pA graphs (hard to plot a weighted graph).  We have also calculated the 
weighted R2 values and verified them to be qualitatively similar to the un‐weighted values presented.  



 
 

The 1999 and 2003 Worship Facility data were combined into a single dataset containing 
269+214 = 483 buildings.  The two sets of regression coefficients were used to calculate pA and pB for 
each of the 483 buildings and are graphed in Figure 1(a).   The graph shows there to be very poor 
agreement between the two different predicted EUI.  The correlation coefficient between pA and pB is 
found to be 0.594 with R2 = 35%.  

 
(a) Predicted EUI (b) ENERGY STAR scores 

Figure 1.  Comparison of (a) predicted EUI and (b) resulting ENERGY STAR scores for Worship 
Facility datasets using regression A (2003 data) vs regression B (2003 data) – see text. 
 

Since ENERGY STAR scores are derived from the ratio e/p, two different values for p produce 
two different scores.   These two scores, SA and SB, were calculated for the combined Worship Facility 
dataset and are graphed against each other in Figure 1(b).  It is apparent that the inconsistencies in 
predicted EUI lead to inconsistencies in ENERGY STAR scores.  At the extreme, buildings find their 
ENERGY STAR score shifted by as many as 70 points (some up and some down) depending which 
regression is used.  For instance, the point inside square 1 in Figure 1(b) has SA = 82 and SB = 40.  Both 
scores are equally valid, or rather, equally invalid.  Similarly, the two points inside square 2 have SA = 
36 and 38 while for both SB = 76.  These scores differ by 40 points simply depending on which dataset 
is used for the regression. 

Next we consider the EPA’s Hotel/Motel model, first introduced in 2002 and subsequently 
revised in 2009 using (EPA 2015/Hotel).  Out replication of the EPA’s model dataset and weighted 
regression (A) exactly matched those reported by the EPA.   Dataset B contained nB = 135 records 
corresponding to an estimated NB = 42,000 buildings in the 1999 building stock.  The weighted 
regression on dataset B yielded a total R2 = 44%.  The two different predicted EUI for the combined 
dataset are graphed in Figure 2(a).  The graph clearly shows better agreement between pA and pB than 
was found for the Worship Facility model.  In this case the coefficient of determination R2 = 79%.  
Nevertheless, the differences in pA and pB lead to significant differences in ENERGY STAR scores SA 
and SB, graphed in Figure 2(b). 
  



 
 

(a) Predicted EUI (b) ENERGY STAR scores 

Figure 2.  Comparison of (a) predicted EUI and (b) resulting ENERGY STAR scores for combined 1999 
and 2003 Hotel/Motel datasets using regression A (2003 data) vs regression B (2003 data) – see text. 

3.2 K-12 School, Warehouse, Retail Store, and Office Models 

Next we look at external validation results for K-12 Schools, Warehouses, Retail Stores and 
Offices.  For each of these models complications arose in replicating the EPA building models with 
CBECS 1999 data.  Below we describe these complications and the procedures used to deal with them.  

Each new vintage of CBECS provides the EIA with an opportunity to improve its survey by 
adding additional questions and variables.  For the four building models discussed here the EPA took 
advantage of new CBECS 2003 variables that were not recorded in CBECS 1999 making it impossible 
to exactly replicate these building models with 1999 CBECS data.  Instead we have found ways either to 
modify the EPA’s regression or the dataset to allow for an apples-to-apples comparison.  These modified 
regressions or datasets are then validated by comparing results on 2003 and 1999 CBECS data. 

The K-12 School model was first introduced in 2000, revised in 2004, and the current version 
was introduced in 2009 (EPA 2015/K-12).  Note that four of the 11 independent regression variables 
apply only to high schools.  Dataset B contained nB = 387 records corresponding to NB = 130,000 
schools in the 1999 building stock.  The 1999 CBECS does not distinguish high schools from other K-12 
schools.  We therefore eliminating the four high school variables and performed a modified weighted 
regression using the seven remaining variables yielding a total R2 = 27%.  We subsequently performed a 
similar modified weighted regression (w/o high school variables) on dataset A which yielded a total R2 
of 25%, only slightly lower than that of the full EPA regression.  The modified regressions were used to 
predict EUI values for the 1999 K-12 School dataset.  These predictions are compared in Figure 3(a) 
where R2 is found to be 13%. 

The Warehouse model was introduced in 2004 and revised in 2009 (EPA 2015/Warehouse).  The 
EPA’s model dataset (A) does not include buildings identified in CBECS 2003 as self-storage facilities.  
Dataset B consisted of nB = 541 records corresponding to an estimated NB = 240,000 buildings in the 
1999 stock.  These data include self-storage facilities as CBECS 1999 does not discriminate between 
these and other non-refrigerated warehouses.  The weighted regression on dataset B yielded a total R2 = 
19%.  For a apples-to-apples comparison we then constructed a modified dataset A which included self-
storage facilities.  This dataset contained nA = 303 records and corresponded to an estimated NA = 



 
 

220,000 buildings in the 2003 stock.  The EPA’s weighted regression applied to this modified dataset 
yielded a total R2 = 46%, slightly higher than that achieved with the original EPA model.  These two 
regressions were used to predict EUI for the 1999 CBECS warehouse data and are compared in Figure 
3(b).  The coefficient of determination for this graph is just 14%. 

   
     (a) K-12 School (b) Warehouse 

Figure 3.  Graphs of predicted EUI using 1999 regression (pB) vs predicted EUI using 2003 regression 
(pA) for (a) K-12 Schools and (b) and Warehouse.  Green line represents expectation that pB = pA. 
 

The Retail Store model was introduced in October 2007 and has not been revised (EPA 
2015/Retail).  Dataset B consists of nB = 236 records and represents an estimated NB = 180,000 
buildings in the 1999 commercial stock.  A key variable in the EPA’s model regression is the register 
density, i.e., number of cash registers per 1000 sf of floor space.  The number of cash registers was not a 
variable recorded in CBECS 1999.  We therefore modified the EPA regression by eliminating this one 
variable.  The modified regression yielded a total R2 = 62% on dataset A and, coincidently, the same 
value on dataset B.  The predicted EUI for these two modified regressions on the combined datasets are 
graphed in Figure 4(a).  The coefficient of determination between pB and pA is 65%. 

The Office model is perhaps the most complex building model utilizing 11 independent variables 
for the weighted regression (EPA 2015/Office).4  Our replication of the EPA’s model dataset (A) 
contains nA = 482 records as it omits 18 records corresponding to court houses.5  The weighted 
regression on this modified dataset yields a total R2 = 33% (Scofield 2014).  The results are 
insignificantly different from those reported by the EPA.  The omitted courthouses apparently have 
negligible impact on the regression. 

Dataset B consists of nB = 845 records corresponding to NB = 310,000 buildings in the 1999 
commercial stock.  To simplify the model we eliminated the two refrigeration variables altogether and 
performed a modified weighted regression on datasets A and B using the nine remaining variables.  This 
yielded a total R2 = 29% on dataset A and 30% on dataset B.  Figure 4(b) is a graph of the predicted EUI 

                                                            
4 Two of the 11 variables (related to the numbers of commercial and residential refrigerators in a building) are not utilized 
in calculating predicted EUI for the Office model – meaning that p are calculated using nine independent variables. 
5 The EPA made use of a variable COURT8 to identify courthouses that is not included in the public CBECS 2003 data. 



 
 

pA and pB for these two office datasets using the 9-variable regression.  R2 for this graph is 90%, 
indicating good agreement between the two predictions. 

 
(a) Retail Store (b) Office 

Figure 4.  Graphs of predicted EUI using 1999 regression (pB) vs predicted EUI using 2003 regression 
(pA) for (a) Retail Store and (b) Office.  Green line represents expectation that pB = pA. 

3.3 Supermarket/Grocery Store Model 

Finally, consider the Supermarket/Grocery Store model.  The EPA’s model dataset merges 49 
records from CBECS 1999 with 34 records from CBECS 2003 (EPA 2015/Grocery).  External 
validation would require data from two older CBECS.  Instead we pursued internal validation by 
separately performing the regression on the 2003 (A) and 1999 (B) data subsets of the EPA’s model 
dataset, each weighted regression achieving total R2 values of 58% (A) and 70% (B).   These two sets of 
regression coefficients were used to calculate predicted EUI pA and pB for the combined 1999/2003 
Supermarket data.  A graph of pB vs pA (not shown) exhibited scatter similar to that shown in Figure 3(a) 
with an R2 = 12%.  The low correlation casts considerable doubt on the validity of these regression 
results. 

 
4. The role of random coincidence in weighted regressions 
 

Earlier it was shown that the EPA’s use of CBECS weights in weighted regressions is an 
inappropriate use of these weights and skews regression results (Scofield 2014).  Moreover, use of these 
weights, combined with the EPA’s statistically-driven methodology for identifying predictors of EUI, 
cause the EPA’s regressions to be particularly susceptible to accidental coincidence.  For the 
Supermarket/Grocery Store model dataset, for example, 9 of the 83 buildings represent half of the 
24,000 buildings in the larger stock.  These 9 samples account for half of the weight in a weighted 
regression.  The EPA considered at least 17 potential independent variables for this model, eventually 
settling on just 7 variables for its final weighted regression (EPA 2015/Grocery).  It has been shown that 
this approach, when applied to 15 columns of random variables, produces a regression model with a 
total R2 and cumulative EER distribution as compelling as the EPA’s actual model (Scofield 2014). 



 
 

Weighted regressions skew the results of all of the seven models considered in this paper.  The 
question arises as to how these weights affect the validation tests discussed above.  For each model 
would non-weighted regressions on datasets A and B produce more consistent results?  To address this 
we have reproduced the above regressions – but without weights – for several of the models and found 
that of graphs of pB vs pA show much more correlation than for the weighted regressions.  Of course the 
statistical significances of the variables in predicting EUI and the total R2 for these regressions are quite 
different from those found for weighted regressions.  Still, preliminary results suggest that non-weighted 
regressions yield far more consistent pA and pB. 
 
5. Discussion 
 

The strong correlation exhibited in Figure 4(b) confirms the consistency of the EPA’s weighted 
regression for the Office model.  Regressions performed on two independent representative subsets of 
the office building stock produce similar results giving us some confidence in the EUI predicted by the 
EPA model.  This model has other problems associated with inappropriate use of weights in the 
regression (Scofield 2014) but here it passes the external validation test for consistency. 

In contrast the low correlation found in Figures 1, 3(a), 3(b), and 4(a) suggest that the weighted 
regressions for the Worship Facility, Warehouse, K-12 School, and Supermarket/Grocery Store 
ENERGY STAR models are not reproducible – and variations in ENERGY STAR scores associated 
with variations in predicted EUI for these models are not meaningful. 

For the last two models, Hotel/Motel and Retail Stores, Figures 2(a) and 4(a) show moderate 
correlation, suggesting these weighted regressions contain some reproducible elements but that their 
predicted EUI still have significant uncertainty which lead to substantial variation in ENERGY STAR 
scores, as demonstrated for the Hotel/Motel model in Figure 2(b). 

The problem with using ENERGY STAR scores based on invalid regressions for evaluating 
building performance is illustrated in Figure 1(b) for Worship Facilities.  Earlier I discussed several 
buildings (squares 1 and 2 in the figure) whose scores differ by 40 points depending on which dataset 
are used for the regression.  These results are not unusual.  ENERGY STAR scores for buildings in the 
middle two quartiles tend to be sensitive to p.  84 buildings in Figure 1(b) have SA in the second quartile

 26 50AS  ; 46 of these – more than half – have scores SB in the third quartile  51 75BS  .  A 

building portfolio manager would be ill-advised to use these ENERGY STAR scores to decide which 
buildings should receive energy efficiency upgrades.  Similarly, a municipality would be ill advised to 
rely on such ENERGY STAR scores to judge progress in improving the energy performance of its 
buildings over time.  And, given the fact that 6 of the 9 building models based on CBECS data fail 
validation tests, one should view any claims of energy savings based on these scores – such as those 
made by the USGBC – with great skepticism (USGBC 2012). 

The central assumption for these validation tests is that changes in the building stock between 
1999 and 2003 were relatively small so that sets A (2003) and B (1999) represent two independent, but 
equivalent samples of the same building stock.  Some readers will question this assumption, suggesting 
that the differences in the 1999 and 2003 regressions reflect real, significant changes in the stock.  If this 
is the case this undermines the credibility of all of the ENERGY STAR models discussed here.  The 
reason is simple – each one, when introduced, was based on data that were already four years out of 
date.  And it they were out of date then, what value do they have today, 12 years after the 2003 CBECS 
snapshot on which these models are based?  And, as mentioned earlier, the EPA explicitly assumed for 
the Supermarket model that the 1999 and 2003 CBECS were equivalent.  Finally, assuming the EPA 



 
 

revises its models based on soon-to-be released 2012 CBECS data, new models, which cannot be 
introduced before 2016, will be based on four-year-old data from the outset. 

Another question raised is whether the modifications we have made to model datasets 
(Warehouse or Office) or the model regressions (K-12 School, Office, Retail Store) are so severe as to 
have negated the value of the validation tests.  In the case of the Warehouse model we have added 26 
observations to the EPA’s model dataset – corresponding to an increase of 10% in nA and 15% in their 
total weight (NA).  This change cannot be responsible for the most of the scatter in Figure 3(b).  For 
office buildings the omission of courthouses (16 of 498 records) has been shown to have negligible 
impact on the EPA’s regression (Scofield 2014).  For K-12 Schools the elimination of the four high 
school variables from the regression would certainly have an impact on predicted EUI for high schools, 
but has negligible impact on other schools.  This affects only 25% of the records in the EPA dataset for 
that model and cannot possibly explain the scatter in Figure 3(a).   In short these modifications might 
cause as much as a 10% reduction in R2 but cannot be responsible for the low R2 observed for four of 
the seven models discussed here.  And, of course, even with these modifications the Office model passes 
the validation test. 

Here we have not attempted to validate the three building models that are based on industry 
surveys (Hospital, Senior Care, and Multifamily Housing).  Additional data are not available to 
externally validate these models.  Internal validation, along the lines of that used for the 
Supermarket/Grocery Store model, may be appropriate.  This is an active area of research.  Internal 
validation, however, cannot assess whether the voluntary data that make up these datasets adequately 
represent their respective national building stocks. 
 
6. Conclusions and Recommendations 
 

We have reported results for our validation tests performed on seven of the ENERGY STAR 
building models that are based on CBECS data.  One model, the Office model, passes this validation test 
suggesting that the trends captured by the EPA’s weighted regression for this model is exhibited in the 
wider office building stock.  In contrast, four of the models – Worship Facility, Supermarket/Grocery, 
Warehouse, and K-12 Schools – are found to fail these validation tests, suggesting that EPA regressions 
for these building models are not reproducible and ENERGY STAR scores based on these regressions 
are highly suspect.  For the remaining two models, Hotel/Motel and Retail Stores, results of validation 
tests are questionable,  suggesting some but not all of the trends identified in these regression models are 
present in their respective building stocks.  Resulting uncertainties in ENERGY STAR scores of even 
these two models are significant. 

How can the EPA improve on the ENERGY STAR benchmarking methodology?  The first thing 
is that it must eliminate the weights from the regressions.  The EPA did not use weighted regressions in 
its earlier models, but has done so since 2007.  The weights are not only inappropriate, they skew each 
of the regressions so that the results are dominated by a relatively small number of samples (Scofield 
2014).  Specialized variables (high school in K-12 School model, bank in Office model) are found to be 
unimportant when these model regressions are repeated without weights. 

With the soon-to-be released 2012 CBECS data the EPA will no-doubt look to modifying many 
of its buildings models.  Before doing that it should use 2012 CBECS data to validate each of its models 
and, more specifically, each of the independent variables.  It is a puzzle that the EPA did not use CBECS 
2003 data for this purpose before revising many of its building models beginning in 2007.  If ENERGY 
STAR scores are to be adjusted based on predicted contributions to the EUI these predictions need to be 
validated.  We would expect as many as half of the independent variables used in the various building 
models to stand up to such validation tests.  Other independent variables will not and should then be 
eliminated.  Regressions should be guided by building physics, getting at the real drivers of energy use.  



 
 

We would be quite surprised if the more convoluted variables used (such as natural log of the cooling 
degree days for high schools) in current EPA models stand up under scrutiny.   

Third, if the EPA is unable to demonstrate valid, reproducible regressions then it should consider 
eliminating the regression altogether and base the benchmarking score entirely on actual source EUI.  
Better to be accurate with no adjustments for external factors than to introduce ad hoc adjustments that 
lead to non-reproducible and highly-variable results.  When we consider fuel usage in automobiles and 
trucks we do not rely on a single index that accounts for external factors.  People who need 7-passenger 
vehicles still buy them even though their miles-per-gallon (mpg) rating is much worse than those of 
most 4-passenger vehicles.  Consumers are smart enough to look at several factors, not just one single 
factor (mpg) in judging vehicle performance.  We believe the same is true of building owners.  The 
Portfolio Manager database has provided an excellent vehicle for major cities in instituting building 
benchmarking programs.  The EPA can continue to effectively support these programs even with a 
simplified ENERGY STAR score.  It is likely that individual cities will develop more useful 
benchmarking indices tailored to their specific needs. 

Finally, if the EPA wishes to continue issuing its ENERGY STAR scores with adjustments based 
on its invalid regressions it should at least drop the interpretation of the ENERGY STAR score as a 
percentile ranking of building energy efficiency.  The EPA can set whatever rules and methodology they 
choose for their building benchmarking scores but they lack the power to give physical meaning to their 
score when it is not justified by the facts. 
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