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ABSTRACT 

A large United States utility implements a program with local jurisdictions to promote building energy 
code adoption. The utility has energy savings goals and recognized that energy codes offered the potential to 
provide significant savings to help achieve those goals. The program provides various types of support to local 
jurisdictions.  

The utility developed initial savings estimates using simulation analyses results, but wanted to conduct an 
evaluation to determine verified savings. Cadmus proposed billing data analyses to produce an empirical savings 
estimate, and the utility agreed. We obtained monthly billing data for all new single family homes, multifamily 
units, and commercial buildings in jurisdictions that adopted recent energy codes, merged billing and floor area 
data, cleaned and filtered the data, and analyzed the billing data analysis using regression analysis with local 
weather data. The analysis produced weather-normalized energy use intensities (EUIs) for baseline (pre-code) 
buildings and buildings constructed under the codes. We compared the pre- and post-code EUIs and estimated 
unit energy savings.  

Over the course of conducting the analysis, we identified good analysis practices and lessons learned. 
Cadmus generated reliable residential code savings estimates. We encountered significant problems estimating 
savings for commercial buildings, but produced reasonable savings estimates and identified key challenges 
analyzing commercial buildings. This study represents a significant step forward using measured energy data to 
estimate code savings. This study demonstrated the feasibility and reliability, as well as limitations, of using this 
method. 

Introduction 

Building energy codes are regulations that establish construction and performance requirements to limit 
the energy consumption of buildings. Energy codes apply to new buildings and often to major renovations in 
existing buildings. Local governments—states, counties, and cities—have the authority to adopt and enforce 
energy codes. States or local jurisdictions usually adopt some version or variant of model energy codes developed 
by organizations such as the International Code Council1 and ASHRAE.2 Although it does not have the authority to 
adopt or enforce energy codes for the private sector, the U.S. Department of Energy (DOE) has been actively 
involved in supporting energy codes for more than two decades through the Building Energy Codes Program.3 
DOE’s involvement has included reviewing the technical and economic basis of the model codes, recommending 
amendments to these codes, and encouraging adoption of all technologically feasible and economically justified 
energy efficiency measures. Federal statute requires states to certify to DOE on a regular basis that they have 
determined whether it is appropriate to adopt a residential building code equivalent to the latest model code and 
have adopted a commercial building code at least as stringent as the latest model code.  

For the analysis to estimate savings from energy codes, DOE has relied on building energy simulation 
models. Using prototypical buildings and software, Pacific Northwest National Laboratory (PNNL) simulates the 
energy savings from a new code compared to a prior code. To date, most other estimates of code savings have 
been based on a similar type of approach.   

                                                           
1 See https://www.iccsafe.org/ for information on the International Code Council. 
2 See https://www.ashrae.org/ for information on ASHRAE.  
3 See https://www.energycodes.gov/ for information on DOE’s building energy code program.  

https://www.iccsafe.org/
https://www.ashrae.org/
https://www.energycodes.gov/


2017 International Energy Program Evaluation Conference, Baltimore, MD 

Figure 1 shows the significant improvement in the energy performance of residential buildings based on 
simulation estimates of energy use under different model codes over time.  

 

 

Figure 1. Trends in estimated residential energy use under different model codes. Source: PNNL 2014 

 
Recognizing the potential for energy savings from more stringent codes, several utilities across the country 

have engaged in activities to promote code adoption. Most notably, since 2000, the California investor-owned 
utilities have supported a statewide program to develop and support adoption of codes and appliance standards; 
this program is now the single largest energy saver in the utilities’ portfolio (Cadmus 2014).  

A few other utilities have similar programs. A large utility in the southwest determined that energy codes 
offered the potential to provide significant savings to help achieve its energy-savings goals. Its management 
decided to implement a program to support adoption of building energy codes. Because code adoption in the 
utility’s service area occurs at the local level, the utility program provides support to local jurisdictions in the form 
of technical assistance, materials, advice, and advocacy with stakeholders and decision-makers. The utility 
developed initial savings estimates using simulation analyses results, but wanted to conduct an evaluation to 
determine verified savings. Cadmus proposed performing billing data analyses to produce an empirical savings 
estimate, and the utility agreed. 

This paper compares modeled and measured energy use approaches to estimate codes savings, discusses 
past billing data studies, then presents our approach and findings.  

Modeled and Measured Code Energy Impacts  

Energy use based on a model is referred to as an asset rating because it reflects a building’s performance 
modeled using standardized operating conditions. On the other hand, energy use based on billing or metered 
energy data is referred to as an operational rating because metered consumption accounts for actual building 
occupancy and operations. Analysts use asset ratings to estimate savings by comparing modeled energy use of a 
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building as built with the same building modeled with specified energy efficiency measures. Analysts use metered 
usage data to estimate savings by comparing the metered energy usage of one building or group of buildings to 
another building or group of similar buildings.  

Studies have used both methods—modeling and energy usage measuring—to estimate building energy 
code savings. Each has advantages and disadvantages.  

One issue in analyzing code energy savings is the degree to which buildings as constructed comply with 
code requirements (Lee and Groshans 2013). If buildings do not comply fully, their expected energy savings will 
not achieve predicted levels. Analysts can use simulation models to estimate how much noncompliance affects 
energy consumption, independent of operations. Typically, site visits are conducted to a sample of buildings to 
document how they are built under the code and a model is used to compare the energy use of each building as 
built to the same building if it had been built to just meet the code. For each building and for the sample of 
buildings, the difference in the asset rating energy use is an estimate of the effect of noncompliance on energy 
use compared to buildings just meeting the code.  

On the other hand, using measured data to assess how noncompliance affects performance is nearly 
unachievable for various reasons. Using this method requires knowing the characteristics of each building in 
addition to having the energy consumption data available for each building. Accounting for the variability in 
occupancy and operations would necessitate a large sample of buildings, as would estimating performance 
accurately and assessing the effect of noncompliance. Both the scope of data and sample sizes required would 
necessitate very large resource commitments. Consequently, we are not aware of any studies that have used 
operational ratings to assess code compliance. 

However, using measured data can provide a very accurate estimate of the actual effects of an energy 
code on utility system loads, regardless of the compliance level and other factors, as long as three conditions are 
met. First, buildings available for analysis need to represent the populations of interest, including buildings built 
under the current code and baseline reference buildings. Second, the number of buildings for analysis needs to 
be large enough to minimize the effects of outliers or data errors. Third, no exogenous influences should affect 
the current code and reference buildings differently.  

A few studies have been performed using measured consumption data to estimate code savings. 
Aroonruengsawat, Auffhammer, and Sanstad (2009) used an econometric model to estimate per capita residential 
energy use by state as a function of several parameters, including the share of new construction since 1970 
permitted while an energy code was in place. Their study estimated code savings ranging from 0.3% to 5.0%, 
depending on the state. Jacobsen and Kotchen (2013) estimated savings of the Florida residential energy code 
implemented in 2002 by comparing the electricity and natural gas usage of homes built before and after the code 
went into effect, for a total of 2,239 homes. The authors used regression analyses that included several home 
characteristics to show that the code decreased electricity use by about 4% and natural gas use by about 6%. 
Withers and Vieira (2015) used both billing and submetered data to compare 31 Florida homes built under the 
2007 state code to 42 built to the code in effect in 1985, and estimated overall savings of 13%.  

Methodology 

Our analysis is focused primarily on billing data analyses we performed on residential buildings, both 
single family and various multifamily housing types.4 We recently analyzed commercial buildings, and this paper 
highlights differences between our residential and recent commercial building analyses. The overall methodology 
involved the following steps: 

 
 Use utility data to identify new buildings built just prior to and after the code went into effect 
 Obtain utility monthly billing data and buildings’ floor areas 
 Clean data and screen buildings 

                                                           
4 Multifamily homes included apartments, condominiums, and town houses. 
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 Model annual energy use for each building and normalize based on normal weather conditions 
 Compare the consumption of buildings built before and after code went into effect—referred to as 

baseline buildings and code buildings, respectively  
 
This research is sponsored by an electric utility that provided data on new customer accounts from January 

2006 through February 2017, along with building floor area and electric billing data for all those customers from 
the first month they initiated electrical service. Although some customers had natural gas service, no natural gas 
consumption data were available.5 

We separated the buildings into two groups: (1) baseline buildings were built before the new code went 
into effect and (2) code buildings were most likely built under the new code. We were able to identify the baseline 
group unambiguously. Identifying code buildings was more problematic. Buildings must be built to the code in 
effect when permitted, so we needed to identify buildings initiating electric service that were permitted after the 
new code went into effect. Permit data for each new building would have made it possible to determine with 
certainty which buildings were built under the new code; however, permit data were not available, and collecting 
that data is usually very labor intensive, if even feasible.  

Based on experience, we applied a decision rule to identify code buildings. For each jurisdiction, we 
determined the effective date of the code. For both single family and multifamily residential buildings, we 
assumed all buildings initiating service after eight months had elapsed since the code effective date were 
permitted under the new code. For commercial buildings, we used 12 months after the effective date as the 
threshold. These intervals accounted for the expected construction lag. Although it is likely that some of the code 
buildings selected based on these tests were actually baseline buildings, any error in identification would make 
the savings estimates more conservative because some buildings identified as code buildings would perform as 
baseline buildings.6  

We completed several additional steps to filter both the baseline and code buildings. We eliminated all 
homes that participated in the utility’s new homes efficiency programs because we were estimating code savings. 
We also used utility and online data to identify homes with swimming pools, and eliminated them to avoid biasing 
the estimates due to the presence of a pool. Commercial buildings did not require similar screening. 

Before analyzing the billing data, we removed all buildings with less than 10 months of data. By capturing 
a swing season, as well as winter and summer months, this screen ensured we had enough billing data to analyze 
the weather response of each building. Figure 2 illustrates the effect of the residential construction lag and 
required billing data for a code effective date of July 1, 2013. Starting with data covering almost two years, only 
homes with service start dates during a four-month period (March to July 2014) would be suitable for analysis.  

 

Jul-13 Sep-13 Nov-13 Jan-14 Mar-14 May-14 Jul-14 Sep-14 Nov-14 Jan-15 Mar-15 

Construction Lag (Eight months)         

    Usable Homes      

      Billing Data Requirement (at least 10 months)*  

* In most cases, we had 12 months of billing data for analysis. 
 

Figure 2. Effect of construction lag and billing data requirement on homes suitable for analysis 

After the initial data screening and cleaning, we performed regression analyses for each building in the 
baseline and code groups using monthly billing and weather data. We used the Princeton Scorekeeping Method 
(PRISM)7 to estimate building energy use as a function of weather (heating and cooling degree days). After 
completing these analyses, we conducted additional quality checks to screen out unreliable observations, 

                                                           
5 The load estimates identified as heating related from our analysis did not provide any indications of a change in fuel mix.  
6 Cadmus did not include buildings starting service after a code went into effect in the baseline. 
7 See http://www.marean.mycpanel.princeton.edu/~marean/ for information on PRISM. 

http://www.marean.mycpanel.princeton.edu/~marean/
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including dropping sites with unrealistically small energy usage (probably due to vacancies), wrong regression 
signs, and missing floor areas. This step required rigorous reviews of the monthly billing data and all PRISM results. 
These steps typically reduced the usable residential populations by about 20%; among residential buildings, the 
reduction was largest for multifamily buildings where we dropped units that were unoccupied during any month. 
We then used the results to estimate the normalized annual consumption by using typical meteorological year 
(TMY3)8 weather data.9 

We used a similar approach to analyze code savings in commercial buildings. We anticipated this analysis 
would be more challenging, because fewer commercial buildings are constructed, construction takes longer, and 
commercial buildings are less homogeneous. To allow for the longer construction time, we used a construction 
lag of 12 months to screen observations. We selected office buildings for initial analysis because the data 
suggested they were the most common type of new commercial building.  

Analysis Details and Results 

First Residential Building Analyses 

Cadmus completed our first analysis of the residential code savings in July 2014, focusing on the 2009 
International Energy Conservation Code (IECC). Four jurisdictions had adopted this code; two of them later 
adopted the 2012 IECC, along with six other jurisdictions that adopted the 2012 IECC directly. We used a more 
stringent test to screen out likely 2012 IECC homes in the 2009 IECC jurisdictions by eliminating any buildings 
where a utility account was opened six or more months after the effective date of the 2012 IECC. 

We defined baseline homes as those with service starting between January 2008 and the effective date 
of the 2009 IECC (from July 2011 to January 2012, depending on the jurisdiction), and 2009 IECC homes as those 
meeting our construction gap criterion based on the code effective date in each adopting jurisdiction. After 
applying our initial data screening, only two jurisdictions had enough 2009 IECC single family homes and one 
jurisdiction had enough multifamily homes for analysis.10  

For each home, we estimated three monthly PRISM models: (1) heating and cooling, (2) cooling only, and 
(3) heating only. We then selected the model for each home with the best fit (based on the regression R-squared 
value).  

For each remaining baseline and 2009 IECC home, we performed detailed screening of the model results. 
Cadmus removed homes with a normalized annual consumption less than 1,000 kWh or with very low monthly 
consumption indicative of vacancy. We also reviewed the available floor area data for each home, and removed 
observations with missing or clearly erroneous data. Table 1 shows how much attrition occurred for each screen 
based on the initial population of baseline and 2009 IECC homes. For single family 2009 IECC homes, the biggest 
reduction occurred due to the need for at least 10 months of billing data. The presence of swimming pools caused 
the largest reduction in baseline single family homes. Multifamily homes were affected most by vacancies. Table 
2 shows the quantitative effects of attrition. 

                                                           
8 See http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/ for TMY3 data. 
9 We used the same year to estimate the PRISM models, then used TMY3 data to calculate standardized consumption and savings. Actual 
savings could differ if TMY3 data do not capture climate trends accurately. 
10 Based on expected variances and desired statistical significance, we needed at least 70 to 100 homes in each sample.  

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
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Table 1. Attrition data for first residential analysis, showing percentage of initial population removed 

Screen Single family Multifamily 

Baseline 2009 IECC Baseline 2009 IECC 

Home built < 8 months after 2009 IECC in effect -- 3.9% -- 0% 

Less than 10 months of billing data 21.4% 64.6% 0% 7.9% 

Cooling usage <300 kWh or total usage <1,000 kWh 1.6% 0.2% 0% 0.1% 

PRISM screen: wrong signs on PRISM parameters 1.2% 1.1% 0% 1.0% 

Outlier removal (monthly outlier/vacancy checking) 12% 5.6% 7.7% 56.1% 

Missing or unreliable square footage  0.6% 0.1% 0% 0.1% 

Home has a pool 24.8% 7.4% 0% 0% 

 

Table 2. Comparison of original populations and final samples for first residential analysis 

Home type Group Initial population Final analysis 
sample sizes 

Percentage of original 
population in final sample 

Single family 
Baseline  

1,589 611 38% 

Multifamily 208 192 92% 

Single family 
2009 IECC 

947 162 17% 

Multifamily 759 264 35% 

 
Using the regression results for the baseline and 2009 IECC homes, we calculated the electricity use and 

EUI for the groups of homes. For single family homes, the reported results were based on the results of the two 
jurisdictions separately, weighted by the proportion of homes constructed in each jurisdiction after the 2009 IECC 
went into effect. Table 3 shows the average energy consumption and estimated savings for single family and 
multifamily homes. The 2009 IECC savings were about 13% for single family and 20% for multifamily homes 
compared to baseline homes.  

Table 3. 2009 IECC first residential consumption and savings estimates  

Home type Baseline 2009 IECC Savings 

kWh/yr Average 
square 

feet 

kWh/ 
sq.ft. 

kWh/yr Average 
square 

feet 

kWh/ 
sq.ft. 

kWh/ 
sq.ft. 

Percentage 

Single family 18,843 2,771 6.80 17,931 3,036 5.91 0.89 13.1% 

Multifamily 11,404 1,386 8.23 7,500 1,136 6.60 1.62 19.8% 

 

Updated Residential Building Analyses  

In August 2015, we updated the estimates for the 2009 IECC to include additional homes built under this 
code and attempted to analyze savings from the residential 2012 IECC. Eight jurisdictions had adopted the 2012 
IECC, but after we screened the single family data, only 78 homes remained for analysis, with no more than 23 in 
any one jurisdiction. However, 238 multifamily 2012 IECC homes remained after the screens. Based on these 
sample sizes, we decided that enough observations were available to estimate 2012 IECC savings for multifamily 
homes, but not for single family homes.  

Due to the passage of time, more 2009 IECC homes were available to analyze in the two original 
jurisdictions, so we first updated the 2009 IECC estimates. Table 4 shows that the number of single family homes 
analyzed increased by a factor of nearly 3.5 (162 to 550) and multifamily homes increased by a factor of nearly 5 
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(264 to 1,289). Savings, both in terms of EUI and percentage, increased slightly for single family homes and 
decreased slightly for multifamily homes. The savings percentage was almost identical for single family and 
multifamily homes, averaging about 16.5%. Given the increased sample sizes, we considered these estimates to 
be more accurate than the initial ones. 

Table 4. 2009 IECC updated consumption and savings estimates  

Parameter Single family homes Multifamily 
homes 

Number of jurisdictions in analysis 2 3 

Number of 2009 IECC homes analyzed 550 1,289 

Average floor area (sq.ft.) 2,815 1,089 

Savings (kWh/sq.ft.) 1.12 1.53 

Average unit savings (kWh/yr) 3,144 1,670 

Average percentage savings 16.2% 16.7% 

 
Table 5 shows the results for 2012 IECC multifamily homes. The populations in two jurisdictions were 

adequate to conduct the analysis. The results showed that EUI savings from the 2012 IECC compared to the 2009 
IECC increased by 0.69 kWh per square foot (2.22-1.53), or 45%.  

Table 5. 2012 IECC updated consumption and savings estimates for multifamily homes  

Number of baseline homes 2,945 

Number of 2012 IECC homes  238 

Average floor area (sq.ft.) 1,050 

Savings (kWh/sq.ft.) 2.22 

Average unit savings (kWh/yr) 2,334 

Average percentage savings 23.5% 

 
By 2016, enough single family homes had been constructed under the 2012 IECC to allow for calculating 

an accurate savings estimate for this code, as shown in the last column in Table 6. To compare this estimate with 
one based on the multifamily results, we applied the 45% savings increase calculated for multifamily homes going 
from the 2009 IECC to the 2012 IECC to the updated estimate of single family 2009 IECC savings (shown in Table 
4). The middle column in Table 6 shows that the estimate using the multifamily results (23%) was almost identical 
to the results from the 2012 IECC single family billing analysis (22%) derived from the sample of 500 single family 
buildings. 

Table 6. 2012 IECC consumption and savings estimates  

Parameter Estimates based on multifamily 
2009 IECC to 2012 IECC savings 

results 

Estimates based on 2016 single 
family sample billing analysis 

Number of jurisdictions in analysis 2 8 

Number of homes analyzed 238 (multifamily) 500 

Average floor area (sq.ft.) 2,737 2,669 

Savings (kWh/sq.ft.) 1.62 (1.45*1.12) 1.67 

Average unit savings (kWh/yr) 4,434 4,471 

Average percentage savings 23.0% 22.0% 
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To compare our savings estimates to simulation estimates, we reviewed estimates in PNNL (2014). 
Differences between the assumptions (such as internal loads) built into the prototype modeled and actual 
buildings made it difficult to make a direct comparison. The most meaningful comparison was for the EUI savings 
between the 2009 IECC and 2012 IECC. PNNL estimated savings of 0.65 kWh per square foot, while Cadmus 
estimated 0.55 kWh per square foot. One factor that could have contributed to the difference between the two 
estimates was that the PNNL estimate was for electric heat, while the Cadmus estimate was determined by the 
unknown fuel mix in the homes we analyzed. Nevertheless, the two estimates were relatively consistent and 
suggested that the simulation results were fairly accurate for a population of new homes.  

Commercial Building Analyses  

In March 2017, we received complete billing data for all commercial buildings initiating electric service 
from 2006 through February 2017. Because the preliminary building counts indicated offices were the most 
common type of new building, Cadmus screened the accounts to limit them to sites identified as offices (based 
on NAICS codes) that had at least 10 months of billing data available, no billing gaps or zero usage months, and 
EUIs that were not improbably large.11 For buildings with service start dates after a code went into effect, we took 
the additional step of ensuring that at least 12 months elapsed between the time the code went into effect and 
electricity service was initiated. 

The utility had identified the NAICS code for each site and used it to categorize the building: these 
categorizations were very accurate overall, but we found some random and systematic errors. One type of 
systematic error was a site being classified as an office when the electricity customer was a property manager. 
From Internet searches, we found some sites listed as property managers because the electricity account was held 
by a property manager, but they were not actually offices. 

For the code sites, we discovered a categorization problem when we tried to confirm the site age. Some 
sites that initiated electricity service 12 months or more after a code went into effect were actually built before 
the electricity service date, and were therefore not subject to the energy code. This occurred frequently with 
customers in suites—many of these initiated service at a time that would qualify them to be covered by the energy 
code, but they were in buildings constructed much earlier. In addition, we had no way of knowing whether suites 
were billed for their complete electrical service or just a portion (for example, lighting and plug loads). For these 
reasons, and to prevent introducing potential errors because of these issues, we removed all sites identified as 
suites from both the baseline and code populations except when we were able to aggregate several suites into a 
complete building. Table 7 illustrates the attrition that occurred in the population of sites that were originally 
identified as probable 2009 or 2012 code buildings.12 The largest share of sites removed were those new service 
accounts for buildings that were built before the code went into effect. 

Table 7. Attrition of potential 2009 and 2012 code buildings 

Screening factor Building count Percentage of total 

None 238 0% 

Pre-code accounts in building 100 42% 

Internet verified pre-code building 63 26% 

Suites 44 18% 

Remaining buildings 32 13% 

 

                                                           
11 In some cases, consumption data were incorrect, floor areas were erroneous, or the combination of consumption and floor area indicated 
that the account was for a facility such as a cell tower.  
12 We refer to the commercial codes as the 2009 and 2012 codes for consistency with the residential codes, but the commercial buildings 
could comply based on the equivalent ASHRAE 90.1-2007 and 90.1-2010 standards, respectively.  



2017 International Energy Program Evaluation Conference, Baltimore, MD 

We conducted initial analyses of the code and baseline buildings that remained and found unexpected 
differences between the two populations. Figure 3 shows that the baseline buildings had a size distribution 
skewed more toward smaller buildings than the 2009 code buildings, which had more of a bi-modal distribution. 
These results suggested a recent shift in the types of office buildings constructed, with larger buildings being more 
common in recent years. Partly because of these distributions, we decided to divide each building group into two 
strata based on floor area13 and analyze and compare the EUIs of these separate strata. 

 

 

Figure 3. Size distribution of baseline and 2009 code buildings  

Table 8 summarizes findings from the billing data analysis for baseline, 2009-code, and 2012-code offices. 
The results demonstrate that code offices in the small and large categorize use less energy than baseline offices 
and that the 2012 code saves more energy than the 2009 code. However, the accuracy of the results is diminished 
by the small populations available to analyze: the relative precisions of the savings estimates all exceed 100%.   

Table 8. Code commercial building consumption and savings relative to baseline buildings  

Stratum Building group Count Average annual 
kWh/sq.ft. 

Savings 
(kWh/sq.ft.) 

Savings 
percentage 

Small 

Baseline 126 15.5 -- -- 

2009 code 11 14.0 1.5 10% 

2012 code 5 9.0 6.5 42% 

Large 

Baseline 18 17.7 -- -- 

2009 code 11 12.7 5.0 28% 

2012 code 5 8.6 9.1 51% 

 
The EUI does not vary significantly between small and large offices in either code group. There appears to 

be a pronounced difference for baseline offices, though, with large baseline offices having an EUI that is 14% larger 
than for small baseline offices. Given the small population of baseline small offices, however, the difference is not 
statistically significant.  

It is important to note that the baseline population was not required to meet a specific energy code. 
Consequently, there is likely to be considerable variability in building practices and variance in the baseline EUI. 

                                                           
13 The mean floor area of the small office category was ~10,000 square feet and the mean area of the large category was ~130,000 square 
feet. 
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The more consistent results for the code offices suggests that the energy code leads, as would be expected, to 
more uniformity in the energy performance. 

To assess the reasonableness of these results, we compared our findings to savings estimated for the 
ASHRAE 90.1-2010 standard relative to the 90.1-2007 standard; these codes are approximately equivalent to the 
2012 and 2009 codes, respectively. PNNL (2013) estimated that a national average EUI of 14.2 kWh per square 
foot for a medium-size office built to the 90.1-2007 standard would be reduced to 10.9 kWh per square foot under 
the 90.1-2010 standard, for a decrease of 3.3 kWh per square foot, or 23%. For comparison, our large building 
category (which is comparable in size to PNNL’s medium category) showed savings of 4.1 kWh per square foot, or 
32% of the 2009 code value of 12.7 kWh per square foot. Given the differences in these estimates—simulation 
estimates compared to billing data and national averages compared to geographically specific results—the values 
are very comparable. This provides support for our billing data results, even though they are based on small 
populations, and provides preliminary empirical confirmation of the PNNL simulation results.  

As described above, Cadmus made a significant effort to identify as clean a population and sample of 
offices as possible. This reduced the proportion of buildings that were miscategorized, but it significantly 
diminished the number of buildings available for analysis as offices. The small population sizes limited the 
confidence we could place in the commercial building energy code savings estimates, but further analysis was 
beyond the scope of this code study. We did make some observations about possible avenues for further 
commercial building code billing data research:  

 Analyze savings from one code to another: Our initial analysis used a baseline of buildings constructed 
prior to uniform adoption of an energy code, and the data showed the baseline building EUIs were 
distributed nearly uniformly over a wide range. Code building EUIs, on the other hand, tended to be more 
normally distributed, with 60% within 20% of their mean EUI and no EUIs as large as 18% of the baseline 
buildings. Consequently, it is likely that more statistically reliable estimates of average impacts could be 
derived for changes between codes rather than from a pre-code baseline to a code.  

 Study other building types: Offices appeared to be the most promising type for analysis because of the 
apparent quantity of new offices. However, our research demonstrated that the original counts 
overstated the actual new offices that could be analyzed. Other building types that are likely to be less 
likely to be miscategorized, such as restaurants, might be good candidates to analyze. Retail buildings are 
another possibility, although some of the same issues confronting research on offices, such as buildings 
with many different retail stores, could limit the available population.  

 Conduct analysis in larger geographic areas: Cadmus conducted this study in a state where codes were 
adopted by municipalities and our study was limited to a relatively small group of cities. Conducting a 
similar study across a state with a single energy code could provide more commercial buildings to analyze. 
Similarly, the study could be conducted for several collaborating utilities to increase the available building 
population.  

 Aggregate building types: Some building types have very similar EUIs and code changes often have similar 
effects on their energy use. In these cases, it might be sufficiently accurate to combine building types and 
estimate savings for the combined category. 

Uncertainties and Limitations 

Although measured energy use data has rarely been utilized to estimate building energy code savings, 
using measured energy data to estimate code savings can provide the most accurate, real world estimates. 
However, this approach poses special challenges and uncertainties. The most significant challenge is ensuring that 
baseline buildings properly represent the counterfactual (that is, what energy use would have been without the 
code). We addressed this issue by defining the baseline as those buildings built as recently as possible prior to the 
new code. This assumes that, without the new code, building practices would have continued as they were before.  

Another challenge is ensuring that buildings are properly categorized according to the code to which they 
are built. We assigned each building to a specific code by assuming a construction lag between the code effective 
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date and utility service date; any buildings miscategorized into the code group will tend to produce a conservative 
estimate of savings. In an ideal situation, we would use building permit data for each building to assign it to the 
correct code, but these data are difficult to obtain. Our approach is to assume a reasonably conservative 
construction lag to minimize miscategorization. 

Other issues involve factors that might cause systematic differences between the code and baseline 
buildings. For example, if data are available for only one fuel type, but the fuel mix differs significantly between 
baseline and code buildings, then the change in fuel mix could bias the savings estimates for the one fuel type 
with available data. Using the most recently built buildings for the baseline minimizes the uncertainty caused by 
this factor because it is unlikely that the fuel mix changed dramatically in a few years. Also, any systematic 
occupancy behavior differences—such as pet ownership—could bias savings estimates.14 Using both recent 
baseline buildings and populations and samples as large as possible help alleviate these potential biases.  

A related issue is any exogenous change that might affect new code and baseline buildings differently. 
Appliance efficiency standards are one example. Standards affecting equipment installed in new buildings produce 
savings that would show up in the billing data and should not be attributed to the building code. In the analyses 
reported here, there were no standards that would have confounded the estimates, but this issue needs to be 
addressed for each code.  

Conclusions 

Based on our research, building energy codes do save energy. Our analyses of building billing data 
revealed that the electricity use of both residential and commercial (office) buildings was significantly less for 
buildings built after an energy code went into effect in jurisdictions where no code had existed before. They also 
showed that a subsequent, more stringent energy code reduced building energy consumption even more. Our 
results provide strong evidence that codes reduce energy use and that the effect is significant. 

Our research demonstrates that billing data analysis can be used to estimate the actual impacts of energy 
codes on real buildings in the market. Building energy simulations will continue to be useful for predicting code 
impacts and estimating the effects of factors such as noncompliance on energy consumption, but billing analysis 
can provide empirical data on the effects of the code, accounting for real-world behavior and building 
construction.  

The relatively good agreement between our estimates and those from simulations suggests that the 
simulation models used to estimate code effects come close to estimating actual code energy impacts. This finding 
provides support for continued use of these models to predict code impacts.  

Through conducting this research, we identified several good practices, limitations, and cautions that 
should be observed in future code savings studies using billing data analysis. These include:  

 

 Residential building populations and usable sample sizes should be sufficient in most cases to 
produce accurate results. 

 Studies of commercial building codes may require large geographic areas to ensure that large 
enough building populations and usable sample sizes are available to analyze. 

 If a mix of fuel types is common, analyses should include natural gas and electricity billing data. 

 Floor area data should be included to allow for EUI analyses. 

 Sufficient construction lags should be established or permit data should be used to categorize 
buildings under the proper energy code. 

 For commercial building code studies, special care should be taken to ensure that the building 
type is defined correctly.  

                                                           
14 There is some evidence that pet owners keep their homes warmer than non-pet owners. 
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 For both residential and commercial building code studies, the analysis should account for the 
effects of efficiency programs, unique energy uses (e.g., swimming pools), appliance standards, 
and other exogenous factors that impact energy use.  

 Baseline or reference building populations should be buildings constructed as recently as possible 
before the code being analyzed.  

References 

Aroonruengsawat, A., M. Auffhammer, and A. Sanstad. 2009. “The Impact of State Level Building Codes on 
Residential Electricity Consumption.” University of California, Berkeley.  

Cadmus. 2014. Statewide Codes and Standards Program Impact Evaluation Report for Program Years 2010–2012. 
Prepared for California Public Utilities Commission. August 2014. Available online: 
http://www.calmac.org/publications/CS%5FEvaluation%5FReport%5FFINAL%5F10052014%2D2%2Epdf  

Jacobsen, G. and M. Kotchen. 2013. “Are Building Codes Effective at Saving Energy? Evidence from Residential 
Billing Data in Florida.” The Review of Economics and Statistics 95(1): 34–39. 

Lee, A. and D. Groshans. 2013. “To Comply or Not to Comply—What Is the Question?” Presented at International 
Energy Program Evaluation Conference, August 13-15, 2013, Chicago, Illinois.  

PNNL (Pacific Northwest National Laboratory). 2013. National Cost-Effectiveness of ASHRAE Standard 90.1-2010 
Compared to ASHRAE Standard 90.1-2007. Prepared for U.S. Department of Energy. 

PNNL (Pacific Northwest National Laboratory). 2014. Building Energy Codes Program: National Benefits 
Assessment, 1992–2040. PNNL-22610 Rev 1. Prepared for U.S. Department of Energy. 

Withers, C. and R. Vieira. 2015. “Why Doesn’t 25 Years of an Evolving Energy Code Make More of a Difference?” 
Behavior Energy and Climate Conference, October 18–21, 2015, Sacramento, California. 

 

http://www.calmac.org/publications/CS_Evaluation_Report_FINAL_10052014-2.pdf

