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Introduction

Both the evaluations of PG&E’s 1992-93 Comm
cial New Construction Program (CNCP) and the 19
Commercial HVAC Program (CHP) attempted to emp
an SAE approach using engineering information collec
in great detail at great cost. This approach appeare
work reasonably well in the CNCP where the estimated
alization rate was .84. However, in the case of the C
the realization rates consistently hovered around .35 wh
given our confidence in the quality of the engineering 
ors, seemed implausibly low. Eventually we were forced
opt for a dummy variable approach that produced a re
zation rate of .92. What follows is an attempt to explain 
performance of the SAE models in the evaluation of th
two programs.

This article will provide a review of the errors 
variables problem and review some of the literature on
effects of this problem in DSM evaluation. It will then d
scribe how econometric theory and recent Monte C
simulation studies were confirmed in a recent evaluatio
PG&E’s CNCP and the 1994 CHP, and suggest steps
can be taken to minimize this problem.

Measurement Error

The error in variables problem is well understood
the econometric literature. However, it is only recently t
the effects of errors in variables have been investigate
the context of SAE models, a common modeling appro
used in the evaluation of DSM programs.

It was during the 1980s that dissatisfaction gr
with the use of dummy variables in evaluating DSM p
grams. This concern prompted the use of what appear
be a more refined measure of the impact of installed
ergy efficient measures. This more refined measure, it 
argued, should increase the precision of estimates o
ergy savings. The dummy variables were replaced in
regression equation by the expected annual or mon
savings, often referred to as an engineering prior. T
prior could be entered into a regression model instea
the traditional dummy variable along with other indepe
ent variables such as weather and other changes in
house or building that were expected to affect kWh c
sumption. Equation 1 is an example of the general form
such a model.
1997 Energy Evaluation Conference, Chicago
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where
Eb,t = metered energy consumption of build-
ing b at time t
α  = model intercept
β = estimated adjustment coefficient for the engi-

neering prior
λ = vector of estimated coefficients for explanatory
variables
Xb,t = a vector of site- and time-specific ex-
planatory variables
ENG = engineering estimate of savings
εb,t = captures the kWh reduction not explained by
the model

The estimated coefficient for this engineering prior
β, often referred to as a realization rate, was an indicatio
of the percent of the expected savings that were realize
These priors were most often based on simplified eng
neering algorithms that were in many cases prepared 
utility staff responsible for implementing the DSM pro-
grams. Utilities usually estimate the expected kWh and kW
savings associated with the installation of each energy ef
ciency measure, e.g., efficient air conditioner, efficien
lights, insulation. These estimates along with other impo
tant customer information are maintained in program
tracking databases (PTD). However, one of our major co
cerns was that the engineering priors contained trackin
system priors may contained error. Of course, there a
various types of error.

Random and Non-Random Error
There are two basic kinds of errors that affect em

pirical measurements: random error and non-random or
systematic error. Random is the term used to designate a
of those chance factors that confound the measurement
any phenomenon. The amount of random error is inverse
related to the degree of reliability (precision) of the meas
urement instrument. That is, a highly reliable indicator i
one that leads to consistent results on repeated measu
ments because it does not fluctuate greatly due to rando
error. The effects of random error are totally unsystemat
in character. An engineering prior that contains random e
ror is one that, in repeated measurements, sometimes ov
estimates the savings while at other times underestima
the savings. With respect to the estimation of HVAC sav
ings, recent research suggests that some of this random 
ror is probably due to the unreliability of estimates of op
erating hours (Sonnenblick and Eto, 1995).

(1)+ENG+X+=E tb,tb,tb,tb, εβλα ∑
479
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The second type of error that affects empiric
measurements is non-random or systematic error. Un
random error, non-random error has a systematic bias
effect on measuring instruments. Thus, an engineer
prior that contains non-random error is one that, in 
peated measurements, always results in either under
mates or overestimates of HVAC savings. Non-random 
ror is very much related to the concept of validi
(accuracy) which is defined as the net difference betw
the obtained measurement and the true value. Just as
ability is inversely related to the amount of random err
so validity depends on the extent of non-random error.

In any given study, it may be the case that some
the variables being measured cannot be measured a
rately, either because of data collection difficulties or b
cause they are inherently difficult to measure. Random
rors in measuring the dependent variables are incorpor
in the disturbance term and their existence causes
problems. However, when the random errors are in the
dependent variables, the problems become quite seri
resulting in biased estimates. To see why this is the c
consider the following. Assume that:

x  =  x  +  vi
*

i i                      (2) (2)

where xi is the true value
xi

*  is the observed value.

The true regression model is
y  =  x  +  i i iβ ε                (3) (3)

Recognizing that x =  x  - vi i
*

i , the actual regression run is

y  = x  + (  - v ) = x  + i i
*

i i i
*β ε β β εi

*  )  (4) (4)

To say that x is measured with error is to say tha
is not fixed in repeated sampling. Instead, the values 
generated by a random process as reflected by vi in Eq. 4.
In other words, the “observed” independent variable is
random variable, called a stochastic regressor, that is
independent of the disturbance term. That is, the error ε *

and the variable x* are correlated, i.e., have a nonzero c
variance. Another way of looking at this problem is to r
fer to vi  in Eq. 2. The greater the variance of vi, the greater

the variable xi
* resembles a random variable and the gre

er the correlation with ε * . This correlation violates a fun-
damental assumption of OLS leading to a biased estim
of β .

In the case of a single explanatory variable, errors
measuring the variable cause the coefficient to be bia
downward. Also, in the case where there is more than 
independent variable in the model, one of which we 
certain was measured with a fair amount of error, there
also bias in the other coefficients, although the direction
unknown. Finally, if two or more variables are measur
480
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with error, the situation is much more complex and o
cannot determine the magnitude or the direction of the b
in any of the coefficients. (Johnson et al., 1987),

The case of systematic error is not a problem. If 
engineering prior in a utility’s program tracking database
in every case greater than 10% of the true value, then 
can be viewed simply as a scaled variable. When a vari
is scaled up or down by a given factor, a, the coefficien
changed by the factor 1/a, the inverse of the factor use
scale the independent variable. The intercept remains 
changed. The important point here is that the estimated
efficient is changed to reflect the change in the scale of
dependent variable but it remains an unbiased estimate.
(Johnson et al., 1987).

Because SAE models are well suited to estimate 
amount of systematic error, such error presents no pr
lem. For example, a realization rate of 80% indicates th
utility tended to overestimate savings systematically 
20%. If there is little random error in this utility estimat
then this estimate of 80% is unbiased. On the other han
there is a fair amount of random error in the measurem
of the engineering prior, then the estimate of 80% is 
ased.

A Shared Concern

Over the last several years, the quality of engine
ing priors residing in utility program tracking systems h
been called into question. In 1992, SCE (1993) estima
gross energy and demand impacts for participants in
1990 Commercial Energy Management Hardware Reb
Program. DOE2 analyses were conducted for a total of
measures in the HVAC, Lighting, and Other end uses. 
cusing on the HVAC end use, 73 buildings were examin
in which package air conditioners were installed. The 
sults of the sophisticated DOE2 analyses (ex post) w
compared to the pre-installation (ex ante) estimates p
vided by Edison’s DSM program staff using simplified e
gineering algorithms and entered into Edison’s progr
tracking database. The errors in estimated kWh impa
were significant and appear to be primarily random rat
than systematic. The simple correlation between coe
cient the ex post estimates of kWh savings and the ex 
estimates was only .19.

Another example is the evaluation of PG&E
Commercial HVAC Program. For this evaluation, es
mates produced by the sophisticated DOE2 analyses
post) were compared to the pre-installation (ex ante) e
mates provided by PG&E’s DSM program staff using sim
plified engineering algorithms and entered into PG&E
program tracking database. The correlation between 
DOE2-based estimates and those contained in the prog
database was .51. While this correlation is higher than
the SCE case, there remains a fair amount of random er

Similar results at other utilities prompted Violett
(1993) to study this problem using a using a propagation
1997 Energy Evaluation Conference, Chicago
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error (POE) model. Using the POE model, Violette sho
how one can examine the uncertainty surrounding eac
the inputs contributing to the estimation of savings as 
as its uncertainty. He points out that uncertainty is c
prised of two components, systematic bias and random
ror. The former can be minimized using by “careful att
tion to measurement protocols and algorithm selecti
The second can be addressed through the use of the
model by which one can develop a cost-effective data 
lection strategy by examining the tradeoff between an
crease in the cost of collecting more accurate inputs 
to estimate savings and the resulting increase in the a
racy of the savings. One of the results of his analysis 
that the operating hour variable contributes more un
tainty to the savings estimates than other variables.
Violette concludes that there are now two basic cho
facing any evaluation analyst:

1. …they can improve the estimates of DSM progr
savings by developing better statistical models of
cility energy use (or change in use) using more 
phisticated methods and larger sample sizes

2. …the precision of the estimates of DSM progr
savings can be increased by improving the s
specific engineering estimates and, in particular,
improving the ability of the engineering estimates
explain site-to-site variation in impacts. (p. 656)

Vine et al. (1995) also expressed concern over
uncertainty surrounding savings estimates. Included
their paper is an attempt to clarify some important c
cepts. They provide a number of recommendations fo
ducing uncertainty. Two of these recommendations c
cern measurement and evaluation.

• Prepare guidelines for achieving cost-effectiv
accuracy levels (similar to MDPU [Massachu
setts Department of Public Utilities] decision)
Consider how to obtain a given reduction i
uncertainty in the most cost-effective manner.

• Prepare guidelines for reducing bias, so th
key factors are accounted for (e.g., progra
spillover).

Sonnenblick and Eto (1994), like Violette (199
also used a POE approach that was implemented via M
Carlo simulation methods to explore uncertainty of sav
estimates as a function of uncertainty surrounding key
puts to the savings calculation. Like Violette (1993), th
found that operating hours are responsible for most o
uncertainty in the realization rate. They go on to add:

• Because the precision and bias of tracking
database and site inspection estimates o
savings seem to vary considerably, and be-
cause an evaluator, absent additional evalua
1997 Energy Evaluation Conference, Chicago
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tion information, has no means of estimating
the accuracy and precision of their tracking
database estimate, it is dubious to rely upon
tracking database estimates of savings alone.

More relevant for this present article, is their exce
lent and thorough analysis of the biasing effects of rando
error in SAE models. Using Monte Carlo techniques, the
created 500 simulated commercial buildings each with tw
years worth of billing data. They created several versio
of the engineering prior. In creating these versions, the
were guided by errors observed in actual utility evalua
tions. One prior mimicked the error found in utility pro-
gram tracking databases; one was somewhat less accu
and was based on site inspections in which auditors ve
fied the existence and operation of the measured and ad
tracking database estimates based on interviews with c
tomers; the third was the least accurate and mimicked t
error observed in actual utility program tracking database
Their model also included other variables such as buildin
size, weather, and annual hours of operation.

Focusing first on priors in which there was no sys
tematic error, they found that the greater the random err
surrounding an engineering prior used in an SAE mode
the greater the downward bias. In cases where there w
less than perfectly accurate (containing random error) e
gineering priors, dummy variable models outperforme
SAE models. In cases in which the prior was perfectly a
curate (no random error), an unbiased estimate of the re
zation rate resulted. More accurate bottom-up (e.g., m
tering) are needed before inclusion in the regressio
models can improve savings estimates.  Next, they focus
on two situations in which there is random variation
around a prior that contains systematic error and a pr
that contains no systematic error. In situations in which th
amount of random error was the same for both priors, th
found that the former model outperformed the latter mode
When the random error around both priors was reduced
less than 10%, both models produced estimates of reali
tion rates near 1.

They concluded that the SAE method “ . . . has du
bious value unless the tracking system estimate used in 
regression is very precise and reasonable unbiased.” Th
also examined the costs of collecting data to support 
SAE model and found that, if site inspection data has a
ready been compiled, three fold increases in evaluation
spending are required to increase model accuracy anot
20% to 30%.

From all of these analyses described in this sectio
three major points emerged. First, the quality of saving
estimates produced by simplified engineering algorithms 
very likely poor. Second, the magnitude of the random e
ror component appears to be significant. Third, the es
mates can be improved using higher quality data and mo
sophisticated models but only at great cost.

The remainder of this article will attempt to under
score the problem of errors in variables in SAE models v
481
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a much less complex Monte Carlo simulation and disc
how the results of the simulation studies were verified i
recently completed evaluation of PG&E’s 1992-93 Co
mercial New Construction Program and PG&E’s 19
Commercial HVAC Program. Finally, recommendatio
will be made with respect to the future use of engineer
analysis in evaluating DSM programs.

Simulation Exercise

A simulation exercise was performed to illustra
the effects of systematic and random error on regres
coefficients. The point here is not to replicate the wo
done by Sonnenblick and Eto (1995) but only to und
score in a considerably less complex analysis the prob
of random errors in the engineering priors in SAE mode

A simple Monte Carlo simulation was conducted 
which 400 program participant cases were created in o
to illustrate the effects of measurement error. Each c
was assigned 36 months of baseline kWh consumption
drawing from a random normal distribution from 10,00
kWh to 50,000 kWh per month. Next a month, between 
13th and 24th month, was randomly selected from a unifor
distribution as the month when the efficient equipment w
installed. At the month of installation, each participan
monthly consumption was reduced by 10% of the base
consumption. Next, four engineering priors were created

1. The first was set equal to 10% of the each partici-
pant’s baseline consumption. This is clearly the
most accurate prior with an expected β of 1.0.

2. The second was set equal to 90% of each par-
ticipant’s baseline consumption. This prior
contains only systematic error with an ex-
pected β of 1.11 (1\.9).

3. The third was set equal to 110% of each par-
ticipant’s baseline consumption. This prior
contains only systematic error with an ex-
pected β of .9 (1\1.1).

4. Other priors were created that contained vary-
ing amounts of random error on either side of
the true value.

5. The fifth was simply a dummy variable, coded
as a 0 before installation and a 1 beginning in
the month of the installation.

The SAE model was estimated using SAS’s PRO
GLM procedure and contained only two variables, a c
tomer specific intercept that captured differences in b
usage across all customers and the installation varia
The customer-specific intercept was allowed for by us
PROC GLM’s ABSORB option.
482
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Ei t i,  =   +  ENG  +  i i,tα β ε (5)

where
Eb,t = energy for customer i at time t

α i = customer-specific intercept
β = estimated adjustment coefficient for the en
neering prior
ENG = engineering estimate of savings
εi,t = captures the kWh reduction not explained 
the model for the ith customer at time t.

Note that this simulation is much simpler than So
nenblick and Eto (1995). First, there is only one indepe
ent variable. Second, the monthly consumption for e
customer does not vary except, of course, for the one 
change following the installation of the efficient equi
ment. This means that there is no noise in the monthly 
sumption data. This simplification is done in order to foc
on the biasing effects of random error in priors wh
holding all other variables constant.

In Table 1, the results of these simulations are p
sented. The first three results are for the completely a
rate prior and the two priors with 10% systematic err
The next eight models used priors that had vary
amounts of random error. The final model employed 
dummy variable. Reported for each run is the beta (the
alization rate) and the magnitude of the error as a per
of the true value.

As one can see, realization rate for the accura
measured prior is 1, as was expected. For those p
measured with a 10% systematic bias, the realization 
are also what one would expect. For those priors cont
ing random error, the realization rates are biased do
ward as the random error component becomes greater.

This simulation suggests that the dummy variable 
proach is superior in situations where the engineering p
contains random error that exceeds approximately 15%.

This simulation suggests that the dummy variable 
proach is superior in situations where the engineering p
contains random error that exceeds approximately 15%.

Close Encounters of the Third Kind

Before going any further, let’s clarify a few ke
terms. Any real-life encounter with something unusual
unexpected (i.e., extra terrestrials, ghosts, honest po
cians, measurement error) has been referred to an enc
ter of the third kind. Encounters of the fourth kind a
when you are actually taken hostage by what you've
countered. The two evaluations reviewed in this sec
describe a situation in which the problem of measurem
error was reduced to a minimum and one in which 
problem of measurement error became an encounter o
third kind that almost became an encounter of the fou
kind.
1997 Energy Evaluation Conference, Chicago



re
on
ro
 
e
 

os
 in

m
ffo
en
n 

l-
t
e 
se

d 
r. 
r s
n

to 
ed
, 

ontrol

on-
al
el
 to
h

the

sur-

ses

m
ro-
in
gh
or

rt-
-

m
n-
-

re

ti-
e
m

r-
e
lly
g
e
f

ys-
s
 to

sti-
fit
l-
Table 1. The Biasing Effects of Random Error
in Engineering Priors

The two evaluations reviewed in this section a
1) PG&E’s 1992-1993 Commercial New Constructi
Program, and 2) PG&E’s 1994 Commercial HVAC Ret
fit Program. These studies have been chosen because
illustrate several important points regarding measurem
error and the engineering costs associated with using
SAE approach. The focus will be on estimation of gr
impacts for the HVAC end use using SAE models that
volve only program participants.

Evaluation of PG&E’s 1992-1993
Commercial New Construction Program

This evaluation employed a very expensive, co
plex, and comprehensive engineering and statistical e
However, in this paper, the focus will be on those elem
that are germane to the issue of measurement error i
context of SAE models.

On-Site Surveys. This evaluation involved the co
lection of data for 171 jobs1 at 150 program participan
sites using on-site surveys. Of these 150 sites, 36 wer
sociated with HVAC installations. These surveys focu
on the area served by the control number2 associated with

                                                          
1 A job is defined as a collection of measures describe

a rebate application submitted by a commercial custome
some cases, more than one job was completed at a custome

2 When electrical service is established at a new locatio
meter base is installed. PG&E assigns a permanent number 
meter base. Over time, one or more meters may be install
measure electrical energy supplied through the meter base
each of these meters is linked to the permanently assigned c
number.

Variable
Realization
Rate

Magni-
tude of
Error As
Percent of
True
Value

No Error 1.00 0
Systematic Error: 10%
Overestimate .91 +10
Systematic Error: 10%
Underestimate 1.11 -10
Random Error #1 .99 +/-10
Random Error #2 .95 +/-20
Random Error #3 .89 +/-30
Random Error #4 .82 +/-40
Random Error #5 .76 +/-50
Random Error #6 .69 +/-60
Random Error #7 .64 +/-70
Random Error #8 .59 +/-80
Dummy .98 N/A
1997 Energy Evaluation Conference, Chicago
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the sampled job. The data collected at the level of the c
trol number provided information needed for the statistic
analysis of gross impacts. Collecting data at this lev
meant that one could examine those kWh data expected
change as a result of the installation rather than the kW
data associated with the entire site. This meant that 
savings as a percent of the consumption (the effect size or
the single-to-noise ratio) were larger thus increasing the
power of the test. In some cases, the scope of the area 
veys was defined by more than one control number.

Engineering Analysis. While the engineering analy-
sis for all 36 sites consisted of five stages, for the purpo
of this article, only three will be reviewed.

1. As-Built with Program Algorithm (Evaluation
Method 1): Produced a revised estimate of progra
savings using the same algorithms used by the P
gram but incorporating as-built conditions observed 
the on-site survey as well as data obtained throu
short-term end use metering for a sample of sites. F
the HVAC end use, 7 sites were sampled for sho
term metering in order to determine lighting sched
ules, HVAC operating hours, and motor utilization.

2. As-Built with Best Available Algorithm (Evaluation
Method 2): Produced a revised estimate of progra
savings using the best available algorithm and i
corporating as-built conditions observed in the on
site survey. A number of engineering models we
used, including DOE2.1E simulation model. In
some cases, the best available algorithm was iden
cal to the program algorithm. The realization rat
(new engineering estimate/original tracking syste
estimate) for cooling, using Method 2, was .86.

3. Evaluation Method 2 Enhanced by Summer Mete
ing (Evaluation Method 3): For certain sites, th
modeling of measure performance was substantia
improved by obtaining end-use metering data durin
the summer of 1995.  Multi-channel loggers wer
used to meter hourly cooling kWh for seven out o
the 43 jobs  (at the 36 sites) where condensing s
tems, efficient chillers, or efficient package unit
were installed. Power measurements were tailored
the specific equipment configuration at each site.

Next, a method was developed to enhance the e
mates of annual kWh for the 29 sites that did not bene
from metering. First, for each of the seven sites the fo
lowing model was estimated:

3
4

2
3

2h1HVAC

HOUR + HOUR +                                    

 HOUR + TEMP +  = KWHSQFT

ββ

ββα (6)

where
KWHSQFTHVAC = the hourly cooling kWh per
square foot of measure-affected conditioned
floor area
483
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TEMPh = temperature at a given hour h of the
day
HOUR = the hour of the day (1 though 24)

Each of the 29 remaining sites was then matched
one of the seven sites based on building type and HV
system type. Each of the seven estimated models was 
used to predict the hourly cooling kWh per square foot
measure-affected conditioned floor area for each of 
sites matched to it.

Statistical Analysis. SAE models were then used t
estimate the gross energy impacts. The models were 
mated first in early June without the benefit of the summ
end-use metering and then later in the fall with the ben
of the end-use metering. The realization rate for HVAC 
the first estimation was .69. Once the engineering pr
for the 43 cooling sites had been enhanced using the s
mer metering data, the realization rate rose to .84.

We suspected that the engineering priors for all 
sites even without summer metering had little random e
to begin with since they were based on very careful s
specific treatment. As a result, a fair amount of both 
systematic and random error was very likely eliminated
appears that the improvement in the realization rate 
due to the correction at the 29 sites of systematic bias in
operating hour variable.

Evaluation of PG&E’s 1994 Commercial
HVAC Retrofit Program

In September of 1995, the evaluation of PG&E
1994 Commercial HVAC Rebate Program was well u
derway. The research plan for the evaluation of PG&
1994 Commercial HVAC Rebate Program also called fo
great deal of costly and sophisticated engineering anal
followed by statistical analyses designed to estimate b
gross and net impacts.

Engineering Analysis. The purpose of the enginee
ing analysis was to provide better engineering priors 
use in SAE models and to provide a backup estimate
gross impacts if the statistical models were ill behav
Our solution, consistent with the preliminary findings 
Sonnenblick and Eto (1995), began with an effort to 
duce the uncertainties in savings estimates through the
of detailed site inspections, metering, and DOE-2.
analyses. A total of 139 commercial participants receiv
on-site surveys in order improve the engineering-based
timates of the gross savings contained in PG&E’s progr
tracking database.

It was expected that this effort would reduce bo
random and non-random error in the savings estimates for
the 139 sites.

An approach was developed to leverage detailed
formation about one building by applying the informatio
to other similar buildings, thus maximizing the number 
sites that could be analyzed.  Prior to the on-site surv
the 139 sites chosen for the engineering impact evalua
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were divided into two groups, a cluster group of 60 site
and a matched pair group of 79 sites.  Sites in the clust
group received a more intensive on-site survey and a DO
2.1E analysis calibrated to monthly bills.  The initial analy
sis of the cluster sites was first completed, and then info
mation from that analysis supported the matched pa
analysis. These analyses are described in more detail b
low.

On-site surveys for the 60 cluster sites involved
collecting data to characterize the as-built and pre-measu
capacity, efficiency, and quantity of the measure-affecte
equipment.  Surveyors also collected data on the type 
HVAC system, operating schedule, control settings an
other performance parameters, as well as the operati
schedule for internal loads in the conditioned spaces serv
by the affected HVAC system, the power density of inter
nal loads in those spaces, and the building envelope ch
acteristics (conditioned floor area, number of floors, per
cent glazing, and glazing type).

Once the surveys were completed, the 60 cluste
sites were grouped into five sets according to key buildin
characteristics.  These groups were: (1) school, (2) reta
(3) hospital, (4) office with central A/C, and (5) office with
packaged A/C.

After the clusters were defined, five calibration sites
were selected to represent groups of the cluster analy
sites and three test sites that were used to assess the v
of the clustering approach to energy savings estimatio
Calibrated simulation models were prepared for each o
these sites using the data collected from the on-site surve
along with billed 1994/95 gas and electric consumptio
and actual 1994/95 hourly weather for the closest NOAA
station (supplemented with PG&E temperature data).  I
addition, for five of the calibration sites, the simulation
model was calibrated to the short-term end-use meterin
data described.

A site-specific calibration plan was developed for
each calibration and test site.  Per the specifications of th
plan, the model was calibrated for each calibration and te
site against actual consumption (kW, kWh and therms) fo
the post-installation portion of the 1994 summer cooling
season (July, August and September).  Simulation inpu
were prepared using survey data.  Short-term end-use m
tering data from the early part of the summer of 1995 wa
also used to establish realistic internal load schedules a
control logic for the HVAC system in the five calibration
sites.

Once each of the calibration and test site post-perio
models were complete, each of them was used to estim
typical base and efficient post-period use (gas and electr
for the corresponding cluster of cluster analysis sites. A
built consumption for each site was calibrated to within
10% of billed kWh and 20% of kW for a calibration period
in 1994.  After calibration, the cluster model was rerun
using typical weather for the pre-condition, as-built, and
when appropriate, Title 20 baseline cases.  Gross savin
1997 Energy Evaluation Conference, Chicago



e
p-

n-
to
at
si
e
ite
on
e
g
g
c

ot
he
av
n 
an
 fo
te

 a
e,
g

hin
hin
ec-
lts
p-
ose
ls.
he
ee

 be

es
ith
-
pe
air
a-
ch
es,
nd
es,
on-
e-
were calculated by subtracting as-built consumption und
typical weather conditions from pre-condition consum
tion.

The question is, in our attempt to leverage the i
formation from the five calibration sites, did we manage 
eliminate or at least diminish the random error. Recall th
in order to determine whether this was the case, a test 
was chosen from three of the five clusters in order to ass
the accuracy of the clustering approach. These test s
were calibrated twice: as though they were a calibrati
site (except for end use metering) and as though they w
a typical cluster site. The resulting estimates of savin
could then be compared to see if our attempt to levera
the information contained in the calibration sites was su
cessful.

Recall that three test sites were modeled as b
calibration and cluster sites to determine what effect t
clustering process would have on the accuracy of the s
ings estimates. The three sites were deliberately chose
rep represent a range of system types, building types, 
HVAC measures.  Consumption and savings estimates
the three sites are shown below in Table 2.  The aggrega
estimates showed very small differences: the sum of the
built consumption for the three buildings, for instanc
showed a difference of 2% between the two methods. A
r
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gregate electric consumption savings estimates were wit
1.2% of each other; aggregate gas savings were wit
13.7% of each other.  Overall, the total savings (both el
tric and gas combined) differed by 11.7%.These resu
confirmed that DOE 2.1E modeling using a clustering a
proach yielded savings estimates reasonably close to th
generated by detailed, site-specific DOE 2.1E mode
However, it is more salient for the SAE modeling that t
errors in the kWh savings estimates at each of these thr
sites are 35.6%, -34.4%, and 10% and they appear to
random.

On-site survey data for the 79 matched-pair sit
were similar to those for the cluster sites, although w
somewhat less detail about the specifics of the HVAC sys
tem. Based on data about building type, size, envelo
characteristics and HVAC system type, each matched-p
site was paired with an appropriate cluster site.  Key p
rameters of the DOE 2.1E model for that cluster site, su
as HVAC schedules, setpoints, and glazing percentag
were then modified to reflect the matched-pair as-built a
pre-measure conditions.  As with the cluster analysis sit
gross savings were calculated by subtracting as-built c
sumption under typical weather conditions from pr
condition consumption.
1997 Energy Evaluation Conference, Chicago 485

TEST
METHOD

CLUSTER
METHOD

% DIFFERENCE

SITE 1:  Office with packaged A/C units
    Total As-built Usage (kWh/year) 1,374,917 1,373,978 -0.07%
    Electric Savings (kWh/year) 9,059 15,819 74.6%
    Gas Savings (kWh/year) 100,994 133,449 32.1%
    Total Savings (kWh/year) 110,053 149,268 35.6%
SITE 2:  Office with chillers
    Total As-built Usage (kWh/year) 1,252,969 1,198,201 -4.3%
    Electric Savings (kWh/year) 32,249 21,139 -34.4%
    Gas Savings (kWh/year) -- -- --
    Total Savings (kWh/year) 32,249 21,139 -34.4%
SITE 3:  School with absorption chillers
    Total As-built Usage (kWh/year) 782,363 770,643 -1.5%
    Electric Savings (kWh/year) 139,395 145,884 4.6%
    Gas Savings (kWh/year) 747,736 831,270 11.1%
    Total Savings (kWh/year) 887,131 977,154 10.0%

TOTAL FOR ALL SITES
    Total As-built Usage (kWh/year) 3,410,249 3,342,822 -2.0%
    Electric Savings (kWh/year) 180,703 182,842 1.2%
    Gas Savings (kWh/year) 848,730 964,719 13.7%
    Total Savings (kWh/year) 1,029,433 1,147,561 11.5%

Table 2: Cluster Test Site Comparison
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It is important to point out that errors introduced i
the cluster analysis were propagated to the 79 matched-
sites. We suspect that additional errors were introduc
since the matched-pair sites used less detailed data and
lied more heavily on default values associated with su
factor as their building type and climate zone.

Next, we attempted to leverage the improved da
from the 139 sites to improve the priors in the remainin
311 sites that did not receive on-site inspections or DO
modeling. Recall that of these 139, 60 were cluster-analysi
sites and 79 were matched-pair sites3. Our original expec-
tation was that this effort would reduce both random and
non-random error in the savings estimates for the 139 si
However, recall that Table 1 clearly indicates that, whi
the total savings for all three cluster sites was within 11.5
of the estimate provided by a rigorous engineering ana
sis, a fair amount of random error was introduced for ea
of three sites. This suggests that, for the 52 cluster si
significant random error was introduced. This in tur
meant that the 79 matched pairs suffered from furth
propagation of these errors. We also suspect that little
the random error in the priors for these 79 sites was 
duced since for these sites there was less reliance on 
specific data.

Without fully understanding the extent to which w
had failed to reduce the random error, we proceeded to 
the enhanced priors for the 139 sites to minimize the s
tematic and random error for all the remaining 311 site
Note that we planned to estimate the gross model using
450 sites (139 + 311). To do this, we used a single ra
approach which involves first calculating the ratio for eac
of the 139 sites of the enhanced engineering-based e
mates of gross savings to the original PG&E engineerin
based estimates of gross savings contained in the prog
tracking database. This ratio is in effect a realization ra
Next, each PG&E estimate for the 311 sites was then 
justed up or down by multiplying it by this ratio. This ad
justment for the other 311 customers is in effect a pred
tion of what the enhanced estimates would have been 
these other 311 customers also received on-site surv
and subsequent simulation analysis. We suspected that
original priors residing in the program tracking databa
contained a fair amount of random error.

However, simply adjusting these priors up or dow
using these ratios from the 139 sites no doubt did very lit
to mitigate the random error problem for the 311 site
Why is this the case? First assume that the original va
ables contain random error. When these variables are
scaled up or down by a given factor, a, the coefficient
changed by the factor 1/a, the inverse of the factor used
scale the independent variable. The intercept remains 
changed. The important point here is that the estimated 
efficient is changed to reflect the change in the scale of 

                                                          
3 See Section V for a complete definition of Calibration

Cluster and Matched-Pair sites.
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dependent variable but it remains a biased estimate since
systematically scaling each variable does nothing to elim
nate the random error in the original variable (Johnson 
al., 1987).

Another important issue is the fact that the PG&E
estimates of gross savings are annual rather than month
If one wishes to use a monthly model, then one must allo
cate the annual savings to months in a manner that reco
nizes any seasonal patterns. Aggregation of the measu
estimates from the DOE 2.1E simulation analyses, by typ
cal month, served as a useful method to allocate PG&
kWh savings estimates across months. Thus, for all site
except those five sites that received careful calibration, e
ror was introduced to the extent that any building did no
match one of the five buildings in terms of operating con
ditions and building characteristics. Even for the five
buildings, error was no doubt introduced since meterin
was only conducted for the summer months and usage h
to be allocated to the remaining non-summer months.

Statistical Analysis. Without fully appreciating the
extent of random error contained in these priors for the 37
sites that had usable data, we tried a variety of  specific
tions in an effort to make the most use of these sophist
cated and expensive engineering data. The realization ra
hovered around .35, which seemed implausibly sma
given what we thought at the time to be greatly im-
proved/enhanced priors. Next, we allow only the 139 site
for which the priors were considered to be superior. Su
prisingly, even here, we failed to obtain realization rate
greater than .5, a number again considered implausible. 
course, none of these results is now surprising given th
propagation of random error described above. Finally
more reasonable results were obtained when all enginee
ing priors were replaced with dummy variables and a real
zation rate of .92 was achieved.

Conclusions

Based on these experiences, we have several conc
sions regarding the future use of SAE models for thos
analysts who wish to avoid encounters of both the thir
and fourth kind. These recommendations are, for the tim
being, restricted to situations in which SAE models are
used to estimate the impact of HVAC measures.

One should be very cautious in using engineering
priors contained in utility DSM program tracking sys-
tems. Our experience and that of others suggest that en-
gineering priors which reside in utility program tracking
databases are riddled with error, a good deal of which is
random error. Both statistical theory and Monte Carlo
simulations have demonstrated that random measure-
ment error in an independent variable produces biased
estimates of β.

To eliminate engineering collection may be pre-
mature. Both Monte Carlo simulations and practical ex-
perience suggest that the challenges of SAE models,
1997 Energy Evaluation Conference, Chicago
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while not theoretically insurmountable, may be practi-
cally insurmountable owing to the high costs.

If one has used on-site data to detect and corre
measurement error, one should be very careful in usi
the ratio of the improved priors to the original priors t
adjust the original priors of those who have not receive
the more rigorous analysis. Attempting to leverage on-s
using such a ratio may do very little to improve the orig
nal priors. This is the case since scaling the engineer
prior, i.e., the independent variable, by this ratio, whil
changing the slope, β, by the inverse of the scaling factor
the magnitude of the random error and the resulting bi
will remain the same.

One could estimate a model using only sites for
which site-specific data had been collected and for whi
DOE2 models have been run. However, regression mo
els can require two to four hundred sites given the size
the expected savings and/or regulatory requirements 
garding sample sizes. This could be prohibitively expe
sive for most utilities.

The value of using dummy variables should not b
underestimated. While not a very precise estimate of t
expected savings, they are very reliable. That is, o
could expect little measurement error since what we’
measuring is the installation of the efficient equipment.

Finally, while quite ordinary, dummy variables are
free.
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