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ABSTRACT

This paper reports on the results of a four-year longitudinal study of the retention rates and
effective useful lives of demand-side management (DSM) measures installedby customers of Southern
California Edison (SCE) in 1993 and 1994 under SCE’S Commercial, Industrial, and Agricultural
(C/I/A) Energy Efficiency Incentives Programs.

Study Scope

The objectives of this non-residential measure retention study were as follows:

● Locate energy conservation measures installed by 1993 or 1994 participants in SCE’S
commercial, industrial,and agriculturalenergy efficiency incentive programs

● Establish baseline conditions by determining fraction of measures that were installed
and operational

● Determine ratesof early removal and disconnects and reasons why

● Determine what has replaced removed measures

● Identify changes in usage patternsover time and in circumstances of use (e.g., location
of measure, end-use service provided, use of space in the area surrounding the measure,
etc.) over time

● Establish measures’ effective usefid lives

The measures studied were as follows:
. Commercial sector measures:
● Electronic ballasts
● CFBS(modular)
● T8 lamps
. Delamping/Reflectors
. HVAC EMS systems
● High-Efficiency Chiller Systems
. Adjustable Speed Drives
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Industrial/AgriculturalMeasures:
Adjustable Speed Drives
Pumps
Pump System (hardware) improvements
Ballasts
T8 Lamps
Lighting EMS
Injection molding
Process cooling
Insulation on process equipment
Air compressors
High efficiency chillers (for processes)



Survey Design

Data on measure retention were collected for a sample of facilities chosen from among SCE
customers who participated in SCE’S Energy Management Hardware Rebate Program (EMHRP) in
1993 and 1994. The sample of facilities was chosen through measure-based sampling. The goal in
preparing the sample design was to permit the useful life of a measure to be estimated with a relative
precision of HO percentage points at the 80 percent confidence level. A sample that combined sample
points from the EMHRP for 1993 and 1994 was used to satisfy these precision/confidence
requirements. At the same time, the sample design incorporated features to lower the data collection
costs.

The analytical framework for the development of the sample design for the study was provided
by survival analysis techniques. Survival analysis pertains to the analysis of data that correspond to
the time from a well-defined time origin until the occurrence of some particular event or end-point.
For this study, the time origin was defined by the installationof a measure under the EMHR program,
while the end-point was defined by the removal or failure of the measure or the discontinuance of its
use.

The measure survival data were expected to have several features that warranted special
treatmentin preparing the sample design.

● The measure survival data would probably not be symmetrically distributed and could
not be reasonably representedby a normal distribution.

● The survival data would be right-censored in that the removal, failure, or
discontinuance end-points would not be observable for some of the installed measures.

● The survival data for some types of measures (e.g., lighting measures) would likely be

affected by clustering. That is, a single customer might have multiple occurrences of a

particular type of measure (e.g., T8 lamps). For a single customer, there could be
expected to be some homogeneity in the lifetimes for the particular type of measure,

since they were all installed at the same time and were subject to similar operational

conditions. Because of this homogeneity, a sample of clustered measure occurrences

would provide less information than a similar sample that did not show such

homogeneity.

A sample design for addressing these and other features of the data was developed through the
following steps.

● First, the number of removals/failures required to meet the precision/conildence
specitlcations for each type of measure was determined.

● Second, the probability of removal/failure for each type of measure over the period of
the study was determined and applied to the required number of removals/failures to
determinethe number of points required in the sample.

● Thir~ the required sample size was adjusted to account for the effects of clustering.

● Fourth, sample points for a measure were allocated among facilities.



To arrive at quantitative estimates of the required sample sizes for the various types of
measures, it was necessary to use a parametric representation for the measure surviwd data. For the
purposes of sample design, it was assumed thatthe survivor fi.mctionfor a measure’s life data could be
represented with the exponential distribution. With an exponential survivor function, the standard
error for the estimated mean from a sample depends on the number of removalslfailures that are
observed. In particular, 41 removals/failures would be required to estimate mean measure life for a
particularmeasure at a relative precision of KZOpercent at the 80 percent confidence level.

Not all of the occurrences of a measure would be observed until their life end-point, giving rise
to right-censoring in the sample. Accordingly, the number of measure occurrences brought into the
sample had to be greaterto accommodate this right censoring phenomenon. The sample size needed to
provide the required number of removals was determined as follows:

Number of requiredremovals j failures
Sample Size =

Probability of removal i failure

The probability of removal/failure with an assumed survivor function could be calculated as a
fimction of (1) specified values for the survivor fmction, (2) the study accrual time (i.e., the period
when measure occurrences take place) and (3) the study follow-up time (i.e., the period when
occurrences are tracked to see whether they are removed or fail). For this study, the accrual period
was 24 months (the years 1993 and 1994 for the EMHR Program), and the follow-up period was 48
months (the four years 1995-1998 when on-site and telephone data collection occur). Mean values of
measure iife for calculating the parameters of the assumed exponential survivor fictions for the
various types of measures were taken from a report on D5MMeasure Lzjie Projecd M@er Tables of
Measure Life Estimates and Final Report, prepared by Energy Management Services for the California
DSM Measurement Advisory Committee (CADMAC).

Given thatthe length of the study was fixed, the probability of removal/ftilure was determined
primarily by the expected mean life of a measure. The shorter the mean life of a measure, the Klgher
the probability of removal or failure. For example, the probability of removalifailure is 0.593 for a
measure with a mean life of 5 years and 0.368 for a measure with a mean life of 10 years. With the
required number of removals/faihres for either type of measure being 41, the respective sample sizes
are 69 and 112.

For measures where there were expected to be multiple occurrences at a site (e.g., for lighting
measures), an additional step in the sample design was to adjust for the intra-site correlation among
usefid iives for the different occurrences at a site. A sample drawn from clusters with some degree of
homogeneity carries less information than a random sample of the same size which is heterogeneous.
On the other hand, using a cluster sampling approach would lower the number of sites that needed to
be visited, thereby reducing costs.

A two-stage sampling procedure was used, with sites were designated as primary sampling
units and measure occurrences as secondary sampling units. A sample of sites was chosen first and
then a sample of measure occurrences was chosen within each selected site. Whether information was
collected for all or for a sample of measure occurrences at a site depended on the type of measure.

● For lighting measures, a sampling of occurrences was used. For each type of lighting
measure, 10 occurrences of the measure were inspected at a sample site. Fixture
groups were defined that had equivalent physical design and approximately similar
operating hours (based on lighting system operating controls). Detailed information



was recorded on ballast, reflector, lens, bulb, controls, task use, and other features as
installed under the program and as noted on program records.

● For HVAC measures and process measures, a census approach was used, since there
were generally only one or two occurrences of a measure at a site.

For each type of measure, EMHRP participants in each year were stratified according to
program year, business sector and size.

● The number of sample points required for any particular measure was divided equally
between 1993 and 1994 participants.

● With the business sector stratification, participants were separated into a commercial
customer class and an industrial/agriculturalcustomer class.

● Within each measureisector grouping, customers were further stratified according to
size using a program category variable developed by SCE program staff. Commercial
and industrialcustomers were assigned to categories according to their kW demand.

k practice, customers who had been surveyed within the past year for another SCE study were
not included in the sample. Where possible, the data collected on such customers for the other studies
were used. For example, data for sites with chillers that had been visited as part of an impact
evaluation of the EMHR Program were included in the sample for the retention study.

The final sample of sites that resulted after sample design and recruitment is shown in Table 1.
There was a total of 937 sites included in the final sample, distributed across sectors and program
years as shown in Table 1. Also shown in Table 1 are the numbers of sites having the measures of
interest for the study. The number of occurrences for some of the measures was higher than the
number of sites because of multiple occurrences of a measure at a site. For example, there generally
were multiple occurrences of lighting measures at a site.



Table 1. Final Sample of Sites for Retention Study

1993
1993 1994

1994 All
Industrial/ Industrial/ Sites

Commercia[ Agricultural commercial Agricultural

Total Numberof Sites 356 179 253 149 937
Numbersof Siteswith SwecifiedMeasures

ASDS 78 49 64 42 233
T8 Lamps 145 59 114 41 359
ElectronicBallasts 98 52 114 41 305
CompactFluorescentBulbs 79 50 129
Delamping/Reflectom 72 28 100
Chillers 17 21 38
HVAC EnergyManagementSystems 94 84 178
PumpImprovements 31 57
PumpReplacements 50 98
LightingEMS 11 11
Injectionmoldingmachines 24 24
Plasticextrusionequipment 6 6
Processcooling 7 7
Processequipmentinsulation 9 9
Highefficiencychillers 7 7
Air eommessors 18 18

26

48

Data Collection Instruments And Procedures

Data for the measure retention study were collected both through on-site visits and telephone
interviews over the four-year period of the study. Each sampled site was visited on-site twice, once

for baseline data collection and once for follow-up. To keep track of events that were relevant to
measure retention but which occurred between on-site surveys, two telephone follow-up interviews
were conducted for each sampled site as well.

Baseline and follow-up data on the measures studied were collected through the on-site data
collection visits. Data were collected that could be used to estimate effective measure lives and to
analyze the effects on service lives of such factors as operational hours, maintenance practices, etc.
The on-site data collection forms were designed for collecting the following types of information:

● Was the program-installed measure still in place and properly installed as specified by
program requirements?

● If the measure was not in place and/or properly installed:
. Was it removed, disconnected, broken, or damaged?
. Why?
— When was it removed/discmnected?
. Was its removal part of a larger change? What?
— Whaf if anything, replaced the measure?

● Was the measure in a good stateof repair?



● Was there a specific maintenance schedule for each measure?

● Has the use of space surroundingthe measure changed since installation? How?

● Was the equipment used differently than it was originally? Less? More? Had it been
modified?

● Had there been business turnover and/or occupant changes?

● What were the customer tmdbuilding characteristics?

Program data that SCE had collected were used to establish the baseline information on
equipment and measures that were installed in the buildings under the EMHR Programs. Changes
from these datawere indicative of building changes and component changeouts. Information extracted
from the program records was provided to the field staff so that they could know what “was” to
compare with what “is” at the site and thereby note or query any apparentchanges.

Discrepancies between baseline, interview, and visual inspection results were resolved by field
personnel prior to leaving a facility. The field staff prepared facility layouts that showed the locations
of the measures inspected. They also placed stickers on the measure devices to identify them as being
included in this study; the stickers included a telephone number to be called if the devices were
removed.

For the follow-up on-site data collection, the baseline data collection form was carried back to
the site, and changes in any of the original conditions at the site were noted on the form.

For the telephone interviews, information was collected to determine the following:

● Whether the facility identified in the baseline survey was still occupied

● Whether the ownerhenant had changed

● Whether the business conducted on the site had changed

● Whether remodels or renovations had occurred or were planned

● Whether the building occupant was satisfied with the measure

Retention Rates For Measures

The data collected were used to establish baseline conditions by determining the fraction of
measures that had been installed and were operational and to determine the rates of early removal and
disconnects and the reasons for earIyremoval and disconnects.

The fourth-year retention rates for the various types of measures for each program year are
shown in Table 2. The rates of retention for some of the measures were relatively high (e.g., energy
management systems, chillers).



Table 2. Retention Rates for Measures

Number Number of Measures Percentage of All Percentage
Removed, Failed Measures Removed, of Measures

Type of Measure
of Measures

Installed or Replaced Failed or Replaced Retained

in Sample in Four Years in Four Years afier Four
afier Installation after Installation Years

Commercial Sector Measures:1993 and 1994 Program Years Combined
T8 lighting fixtures 2,613 244 9.3% 90.7’%0
T8 lamps 6,667 2,209 33.1’%0 66.9%
Electronic ballasts 2,749 161 5.9% 94.1’%
CF fixtures (modular) 1,301 74 5.7% 94.3%
CF kZmpS 1,586 403 25.4% 74.6%
Delamping/reflectors 1,354 105 7.8% 92.2%
HVAC EMS 178 2 1.170 98.9%
Chillers 38 0.0% 100.0%
Adjustable speed drives 225 6 2.7% 97.3%

industrial Sector Measures: 1993 and 1994 Program Years Combined
T8 lighting fixtures 1,005 66 6.6% 93.4%
T8 lamps 2,753 525 19.1’%0 80.9’XO
Electronic ballasts 1,073 30 2.894. 97.2%
Adjustable speed drives 139 14 10.1’XO 89.9%
Lighting EMS 11 1 9.l% 91.9%
Injection molding machines 27 5 18.57. 81.5’%.
Plastic extrusion equipment 8 3 37.5’XO 63.5%
Process cooling 6 0 O.o’xo 100.0%
Process equipment insulation 5 1 20.0% 80.0%
High efficiency chillers 5 0 0.0% 100.0%
Air compressors 18 3 16.7% 83.3%

Agricultural Sector Measures: 1993 and 1994 Program Years Combined
Pumps/pumpsystem 175 18 10.3% 89.7%
improvements
Adjustablespeeddrives 139 14 10.1% 89.9%

Estimates of Effective Useful Lives

For purposes of this study, the effective useful life of a measure was defined as the median

number of years that the measure installed under a program was in place and operable. In effect, the
median age is the number of years that pass untiI 50°/0 of the installed measures are no longer in place

and operable. Determining the effective usefi.d life according to this definition required deriving a

survival f~ction for a measure, where a survival finction shows the fraction of installed measures still
in place and operable as time passes.

Because the retention rates for the first four years after installation were relatively high for the
measures studie~ non-parametric methods of estimating survival fmctions were not appropriate. Non-
parametric methods can give an accurate estimate of median survival time only if more than 50’%0of
the measures are no longer in place and operable.



Parametric methods therefore were used for estimating a median survival time for each
measure. One diffhdty with using a parametric approach to estimate a survival function directly is
that if a measure has a high early retention rate, then there is little information with which to
distinguish between different functional forms for the survival fimction. By definition, 100’% of the
measures were in place and operable under baseline conditions. As Table 2 showed, estimates of the
percentage of measures still in place after three or four years could also be determined from the data
colleeted. However, no actual data on which to base the survival function were available for the
particular measures beyond the third or fourth year. Because of the limited time span that the
collected data cover, a variety of fimctions that imply significantly different survivaI patterns and
median lives could befitted through the data points.

Instead of estimatingthe survival function directly, a hazard function was first estimated using
the available da~ and the estimated hazard function was then used to develop an associated survival
function. A hazard function defhes the probability thatan item will ftil in the next unit of time, given
that it has survived to the present. For the analysis in this study, the hazard rate for any given time
period (e.g., a year) representsthe proportion of measures thatwere removed or failed during the time
period, given that they had survived to the beginning of the time period Once a hazard function is
estimated, a w-responding survival function S(t) can be determined, where S(t) representsthe percent
surviving at time t.

Two of the distributions commonly used for survival analysis are the exponential distribution
and the Weibull distribution. With the exponential distribution, the hazard rate is constant, and the
associated survival fimetion is also exponential. However, the exponential distribution does not
represent hazards that increase or decrease over time. If the hazard rate does increase or decrease
monotonically with age, the Weibull distribution can be used to represent the hazard function and the
survival function.

To illustratethe procedure used to estimate measure life, consider T8 lamps in the commercial
sector as an example. To estimate a hazard function for T8 lamps, data were taken from the on-site
data edlection, since dates of removal for individual lamps were identified during the on-site
inspections. Data for both 1993 and 1994 program years were combined for the analysis. These data
and the calculated hazard rates are reported in Table 3.

Table 3. Data for Calculating Hazard Rates for Commercial T8 Lamps

Years Lamps Lamps Hazard Rate
since at Start Remove&Failed (Rate of

Installation of Year during Year RemovalLFaikre)

1 6,667 35 0.52%
2 6,632 166 2.50%
3 6,466 714 11.04%
4 5,752 1>294 22.50V0

Inspection of the calculated hazard (removal/failure) rates for commercial T8 lamps for each
year since installation showed clearly that the hazard rate increased over time. It therefore was not
warrantedto assume thatthe survival function for T8 lamps could be representedusing the exponential



distribution. A Weibull-based hazard function was therefore used as the functional form for
estimatingthe hazard fi.mctionfor T8 lamps.

A power curve fit to the hazard rate data in Table 3 provided the estimates of the parameters
for the Weibull distribution representationof the hazard rate function. The resulting parameterization
of the Weibull fi.mctionfor the hazard function was as follows:

Weibull hazard rate fimction for age t = h(t) = 0.00125*3.7594 *Age2-7594

The associated survival function is given by

Percent surviving at age t = S(t)= exp(-0.00125*Age”3 ”7594)

For this survival function calculated for commercial T8 lamps, the median survival time is 5.37
years. By comparison, SCE’S ex ante estimate of the effective useful life of a T8 lamp in the
commercial sector is 5 years.

A statisticaltest of whether the ex post estimate of useful life is significantly different from the
ex ante estimate can be made by constructing an 80°/0cotildence interval around the ex post estimate
and determining whether the ex ante estimate falls within this confidence interval. If the ex ante
estimate falls inside the constructed confidence interval, then the hypothesis of no difference between
the ex ante and ex post estimates cannot be rejected.

Three sets of parameters for the Weibull hazard rate function were used to construct an 80%
cotildence interval for the estimated median life of a measure. These sets of parameters were
provided by the power curve regression analysis for each measure. One set was the “best” fit
parameters,and the other two sets were for the upper and lower bounds of the 80% confidence interval
for the estimated“best fit” coefllcients.

Figure 1 illustrates this for the case of T8 lamps. Shown there are the “best” fit survival
fi.mctionand the upper and lower bound survival functions associated with the 80% confidence level.
The upper and lower bounds on the “best” fit survival function provide the confidence intervalbounds
for the estimated median usefid life. For T8 lamps, the estimated median usefi.d life was 5.37 years.
The 80% cotiidence interval for this estimate is 4.31 years to 6.96 years. Because SCE’S ex ante
estimate of 5 years for the useful life of T8 lamps falls within this cotildence interval, the hypothesis
of no difference between the ex ante and ex post estimatescould not be rejected.
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Figure 1. Survival Function Plot for T8 Lamps in Commercial Sector
with Upper and Lower Bounds

Similar analyses were performed for other measures where data were suftlcient. However, the
analysis could not be applied to measures where the numbers of removals or failures were too low to
support estimation of a hazard fimction. Generally, the analysis could be performed for lighting
measures and adjustable speed drives, but could not be performed for HVAC and lighting EMS, for
high efficiency chillers, and for process measures.

All of the measures for which the data allowed analysis of effective usefid lives showed hazard
rates that increased with time, so that a Weibull distribution was used to represent the hazard function
for each. The resulting estimates of median survival lives are reported in Table 4 and compared to

SCE’S ex ante estimates of effkctive usefbl lives. There was relatively good agreement between SCE’S
ex ante estimates of effective useful lives and the median survival lives estimated through this study.
Only for two measures (i.e., electronic ballasts and compact fluorescent lamps) could the hypothesis of
no difference between ex ante and ex post estimatesbe rejected.

One reason why the median usefil life of electronic ballasts as estimated through this study is
somewhat lower than SCE’S ex ante estimate is thatsome electronic ballasts manufactured in 1993 and
1994 failed relatively early. To the extent that manufacturing problems with such baliasts carried
over, the survival fimction estimated in this study would show higher percentages of failures in early
years, which would lower the estimate of median usefid life.



Table 4. Estimated Median Lives Compared to Ex Ante Estimates (Lives in years)

SCE Estimated Median LiJe Ex Ante

Measure
Ek Ante

Em 80% Lower
Dl#ierent

bound
Estimate 80:OS pon’1

Value & Post?

CommercialMeasures
T8 lighting fixtures 11 2.24 9.11 >100 No
T8 lamps 5 4.31 5.37 6.96 No
Electronic ballasts 10 6.82 7,80 8.78 Yes
CF fixtures (modular) 12 4.38 10.51 78.43 No
CF kunps 2.2 5.48 5.73 5.99 Yes
Delamping/reflectors 10 4.20 18.85 >100 No
Adjustable speed drives 10 ** 11.13 ** No
I-WAC EMS 15 ** * ** No
Chillers 20 ** * ** No

Industrial Measures
T8 lighting fixtures 11 ** 9.18 ** No
T8 lamps 5 3.36 4.32 6.08 No
Electronic ballasts 10 5.97 7.94 11.65 No
Adjustable speed drives 10 ** 12.31 ** No
Lighting EMS 15 ** * ** No
Injection molding machines 15 ** * ** No
Plastic extrusion equipment 15 ** * ** No
Process cooling 15 ** * ** No
Process equipment insulation 15 ** * ** No
High efficiency chillers 20 ** * ** No
Air compressors 15 ** * ** No

Agricultural Measures
Pumps/pumpsystem 11 2.05 6.72 >100” No
improvements
Adjustablespeed drives 10 ** 12.31 ** No

—. .. . . .
‘Data not Sufliclent to estimate medmn hte.
**Data not s~cient to estimate confidence interval.

Conclusions

This study represented a major multi-year effort to collect and analyze data pertaining to the
lives of demand-side management measures. A sample design was used thatwould ensure that where
possible, sufficient data would be collected with which to estimate useful lives. Sufficient data were
collected with which to develop estimates of useful lives for lighting measures. However, for long-
lived measures (e.g., HVAC EMS, chillers), the number of removals or failures that could be observed
even over a four-year period was not sufficient to support estimation of usefil lives.


