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ABSTRACT 
 

The California Energy Commission has sponsored the development of a standardized 
measurement and verification protocol for use in calculating demand reductions by participants in 
demand response (DR) programs. The basis of this protocol is the calculation of the baseline electricity 
load profile against which peak load reductions are calculated. Completion of the protocol is aimed at 
increasing participation in DR programs from small- and medium-sized customers by reducing the 
barriers related to inconsistency and confusion about baseline methods and ensuring that only real and 
verifiable peak load reduction receives payments.   

A standard protocol is recommended based on interviews with stakeholders in several different 
jurisdictions and states, as well as statistical testing of several alternative methods and features on a 
large number of data sets from around the country. The work also proposes terminology for describing 
baseline calculation methods. 
 
Introduction 
 

During the electricity crises of the last few years, a number of states and utilities within these 
states have developed programs to encourage customers to reduce their peak loads on short notice 
(under 2 to 24 hours) in exchange for some form of compensation. Such demand response (DR) 
programs depend on a credible operational procedure for determining the magnitude of load reductions. 
Fundamental to determining the magnitude of load reductions is the estimate of baseline load, the load 
that would have existed if there had been no reduction.   

The use of inconsistent methods for calculating baselines and corresponding load reductions has 
caused both confusion and dissatisfaction among participating customers. For weather-sensitive loads, 
commonly used methods can provide low and even decreasing incentives during normal periods of 
extreme temperatures when DR programs are most likely to be in operation. For example, in California, 
the use of simple averages in the third day of a heat storm often estimated little or no savings because 
the baseline shape was calculated during relatively cool weather. The lack of a standard measurement 
procedure may be reducing the number of customers willing to participate in DR programs, particularly 
in smaller- and medium-sized commercial customers.  

This work is intended to provide the foundation for a protocol that may be adopted as part of the 
International Performance Measurement and Verification Protocol (IPMVP; California Energy 
Commission 2003). The intent is not to provide a prescriptive set of steps and rules. Rather, the goal is 
to establish a clear vocabulary to use in describing the methods used to estimate peak load reductions 
delivered in response to emergency or price conditions, and to offer guidelines on good practice and the 
pros and cons of alternative calculation methods.   
 
Background 
 

The focus of this study is on calculations of DR (peak savings in kW) using whole-premise 
interval load data from a sample of 646 customers that vary across account type and geographical 



location. DR is calculated as the difference between the baseline and the actual metered load in each 
interval (Figure 1). In the event of DR program involvement, actual metered load would be lower for the 
whole premise as a result of active curtailment, or lowering, of load levels at the site. The baseline is the 
estimate of what the load would have been in each interval in the absence of the curtailment. Thus, the 
key question for the DR calculation is how the baseline is determined. 
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Figure 1.  Example of Demand Response Calculation from Baseline and Actual Loads 

 

In the interviews conducted with ISO and utility DR program personnel, we asked for desirable 
features in a DR baseline calculation method. All customer baseline developers understood that the 
baseline methodology they chose was a compromise. Criteria that are balanced in developing a baseline 
include: 

• Simplicity; 
• Ease of use for program participants and administrators; 
• Ease of understanding; 
• Verifiability; 
• Accuracy; 
• Lack of bias (i.e., no systematic tendency to over- or understate reductions); 
• Ability to handle weather-sensitive accounts fairly; 
• Minimization of gaming; 
• Ability to be known prior to customer�s commitment to a particular curtailment amount and 

event; 
• Costs for participant and operator to implement; and 
• Consistency with other ISOs. 

 The development of a standard baseline calculation protocol must take into consideration all of 
these criteria. The body of this paper focuses on the one criteria amenable to quantitative testing, namely 



accuracy, including both bias and variability. The results and recommendations address the wider list of 
criteria. 
 
Classifying Baseline Calculation Methods 
 

Baseline calculation methods based on whole-premise interval-metering data can be described in 
terms of three fundamental components: 

• Data selection criteria determine what days and time periods of data will be used in the 
baseline calculation.   

• The estimation method is a calculation procedure that determines the provisional baseline 
load at each interval for the curtailment day, using the data selected by the data selection 
criteria. 

• The adjustment method shifts or scales the provisional baseline load shape to align it with 
known conditions of the curtailment day. 

Working with these three components provides a framework within which the wide range of baseline 
method options can be systematically organized. Furthermore, baseline methods presently in use by 
ISOs and utilities can be characterized in terms of these components.1 
 
Data Selection Criteria 
 

Choosing the period from which to draw data requires the balancing of competing priorities. 
There is a tension between using more data and using more representative data. Customer type, data 
availability, data handling cost, and the estimation technique to be applied to the data all come into play. 
In actuality, most programs fall into one of two camps. The initial selection of days for the ISO 
programs all involve a variation on using the last 2 weeks of business days. Methods used by utilities for 
program evaluation tend to involve using data for a full season. Within the initial selection of days, it is 
common to choose a subset based on some sort of ranking, primarily load.   

All existing methods delete from the data selection any days that had a control or curtailment 
event (i.e., a request to reduce load). Some replace these excluded days by going farther back in time as 
needed. Similarly, some methods screen out days of low or extreme output based on varying criteria and 
with or without replacement. For this analysis, all excluded control days were replaced with the next 
eligible day. No extreme output exclusions were tested. If extreme output exclusions were used, they 
would likely affect high-variability account results. Variations we tested within these general rules are 
indicated below. 
 
Estimation Method 
 

The two broad types of methods used to estimate baseline load shapes are averaging and 
regression. We describe these methods more specifically below. In the analysis conducted, all load data 
were available on an hourly basis, and the analysis was conducted on this basis. In some markets, load 
data are collected and DR is calculated on a finer time interval, such as half-hour or 15-minute intervals. 
Our discussion refers to analysis of hourly data. However, the same principles would apply with data at 
a finer time increment. 

 

                                                 
1 Sources for ISO baseline protocols are listed in the references.   



Averages.  Averaging means that the baseline for each time interval of the curtailment day is calculated 
as the simple average, across all the days chosen by the data selection criteria, of the loads at that time 
interval. For example, the baseline for the hour ending 1:00 PM is the average over all the selected days 
of the loads on those days for the hour ending 1:00 PM. 
 
Regression Models.  Regression can take a wide variety of forms. The models included in this study 
can be understood as extensions of simple averaging that allow for the inclusion of weather variables. It 
is beyond the scope of this work to attempt to determine the best general regression model for this 
application. 

In the context of calculating DR load baselines, the regression model uses the data selected for a 
particular account and event. The model is fit to those data, and applied to the conditions during the 
event, to estimate the load that whole premise would have in the absence of the control or curtailment, at 
each time increment in the event. In all applications reviewed and all methods tested, the model is fit 
separately for each account.   

In most cases, the model is also fit separately for each curtailment event, because different data 
are selected. The exception is model fitting based on a full season of data. In these cases, the same 
model fit applies to all events. The estimated loads vary by event because the control-day conditions 
vary. 

In these models, each observation corresponds to a particular day and hour (or finer time 
interval). The dependent variable is the account�s load at that day and hour. In almost all the applications 
reviewed, a different set of coefficients is estimated for each hour of the day. The predictor variables are 
typically weather variables and possibly day type. Thus, each observation consists of the account�s load 
for a particular day and hour together with the corresponding weather variables. 

Data on factors such as production output, occupancy, or number of shifts operated could 
potentially be useful predictors for some accounts, particularly those that are not weather-sensitive. 
However, meaningful, objective, customer-specific variables that track activity by day are typically not 
available. As a result, we did not test any models with such variables.   

Weather variables can be included in a regression in a number of ways. Outdoor temperature can 
be included on an hourly basis or as an average over the day. Both hourly and day-average temperatures 
can be included either directly or in degree-day form, representing the difference from some base 
temperature. A lagged temperature variable can also be included. Humidity can be included either 
separately or combined with temperature in a temperature-humidity index. We tested model versions 
with all these weather variables. Other variables such as hours of daylight, sunshine, wind, or 
precipitation could also be considered. 

All the models we tested had hourly varying coefficients including an hourly intercept. That is, 
sets of 24 hourly coefficients were fit.   
 
Description of Models Tested.  The models tested are indicated in Table 1, with the variable definitions 
indicated in Table 2. Each model was tested with each of the decision rules indicated in Table 3. 
 



Table 1.  Model Forms Tested 

A Average. No variables besides the intercept term. Ldh = αh 
B Daily temperature. Ldh = αh + βhTd 
C Hourly temperature.  Ldh = αh + βhTdh 
D Daily heating and cooling degree-days. Ldh = αh + βhHDDd +γhCDDd 
E Hourly heating and cooling degree-hours. Ldh = αh + βhHDHdh + γhCDHdh 

F Hourly heating and cooling degree-hours with 
lagged degree-hours. 

Ldh = αh + β1hHDHdh +γ1hCDHd 
+β2hLHDHdh + γ2hLHDHdh 

G Hourly temperature-humidity index. Ldh = αh + βhTHIdh 
 

Table 2.  Variable Definitions 
Variable Definition 
Ldh  Load at hour h on day d. 

Td  
Daily average temperature (average of daily minimum and maximum) on 
day d. 

HDDd  Heating degree-days base 65°F on day d. 
CDDd  Cooling degree-days base 65°F on day d. 
HDHdh  Heating degree-hours base 65°F at hour h on day d. 
CDHdh  Cooling degree-hours base 65°F at hour h on day d. 
LHDHdh  Lagged heating degree-hours base 65°F at hour h on day d. 
LCDHdh  Lagged cooling degree-hours base 65°F at hour h on day d. 
THIdh Temperature-humidity index for hour h on day d. 

αh, βh, γh Coefficients determined by the regression, h = 1, 2, �, 24. 
 

Table 3.  Selection Rules Tested 
Code Label Selection Rule 

1 Previous 10 Previous 10 business days beginning on d0-1 (California and 
New England ISOs) (California ISO 2001; ISO-NE 2002). 

2 Previous 11 Previous 11 business days beginning on d0-1. 
3 Previous 10 starting d0-2 Previous 10 business days beginning on d0-2. 
4 Previous 20 Previous 20 business days beginning d0-1. 
5 Previous 10 and Next 10 20 business days from d0-10 to d0+10. 
6 High 10 of 11 Highest 10 of the last 11 business days, beginning d0-1. 

7 High 5 of 10, starting d0-2 Highest 5 of the last 10 business days, beginning d0-2 (New 
York and PJM ISOs) (NYISO 2001, 2002; PJM 2002a, 2002b). 

8 Full season Entire season that includes the control day. 

9 Full previous season Entire season from the previous year that includes the control 
day. 

 

 In model F, the lag degree-day terms are based on lagged temperature calculated as 
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where LTdh is lagged hourly temperature and Tdh is hourly temperature and e is the natural base. 



There are many different temperature-humidity indexes. For model G, we use PJM�s method: 
 

THIdh = Tdh � 0.55(1-RHdh/100)(Tdh�58), Tdh > 58 , or 
     Tdh, Tdh < 58. 

 
where RHdh is relative humidity at hour d of day h. The temperature-humidity index increases with 
humidity as well as with temperature, and therefore may be a better predictor of load increases related to 
cooling. 
 
Conditional Weather Models.  Each of the weather models B through G was fit as a �conditional 
weather model.� That is, the weather terms were kept in the model only if certain model diagnostics 
indicated that these weather terms were physically meaningful (at least positive in total) and statistically 
well-determined (F-statistic for including the set of cooling [or heating] coefficients significant at the 
0.10 significance level).   

The full set of cooling coefficients were either all retained or all dropped from the model. 
Likewise, the full set of hourly heating coefficients were either all retained or all dropped from the 
model. If both the heating and cooling terms were dropped from the model based on these criteria, the 
model reduced to a simple average by hour of the day. 
 
Adjustment Method 
 
 We tested three different adjustment methods, using two different time periods for the 
adjustment where possible. Adjustments are designed to update the provisional estimated baseline load 
curve with data from just prior to the curtailment period. The provisional estimated baseline is simply 
the unadjusted baseline as estimated by any of the estimation methods described above. 

• Additive adjustment.  A constant is added to the provisional baseline load for each hour of 
the curtailment period. For simple additive adjustment, the constant is calculated as the 
difference between the actual load and the provisional baseline load for some period prior to 
the curtailment.   

• Scalar adjustment.  The provisional baseline load for each hour of the curtailment period is 
multiplied by a fixed scalar. For simple scalar adjustment, the scalar multiplier is calculated 
as the ratio of the actual load to the provisional baseline load for some period prior to the 
curtailment.   

• Weather-based adjustment.  A model of load as a function of some weather parameter is fit 
to historical load data. The fitted model is used to estimate load (a) for the weather conditions 
of the days included in the provisional baseline, and (b) for the weather conditions of the 
curtailment day. The difference or the ratio of these two estimates is calculated and applied 
to the provisional baseline as an additive or scalar adjustment. 

Both the additive and scalar adjustments are calculated using two different time periods: the two hours 
prior to the start of the curtailment, or the third and fourth hours prior to the start of the curtailment. 
Only full-hour data unaffected by the curtailment are used. 
 
Curtailed Accounts vs. Uncurtailed Accounts 
 

Each account for which load data were available was classified as either curtailed or uncurtailed 
for each year of data. Curtailed accounts were those that had at least one curtailment period during the 
year. Uncurtailed accounts had no curtailment events during the year. The latter were either accounts 



that were in a curtailment program that had no control events that year, or were in the same size class as 
the accounts in the curtailment program. 

For curtailed accounts, the test days were the actual curtailment days. For uncurtailed accounts, 
the test days were the curtailment days for the similar accounts from the same utility that were in a 
curtailment program, or else extreme hot or cold days. For uncurtailed accounts, we compared the load 
estimated by each baseline method for each test day with the actual observed load on that day. For 
curtailed accounts, we compared each baseline method�s estimate of what the load would have been in 
the absence of curtailment with the estimate given by the �best� method. 
 
Account Type Classification 
 

For this analysis, we solicited interval load data from several parts of the U.S. for both curtailed 
and uncurtailed accounts. Regions represented included California, the Northeast, Northwest, 
MidAtlantic, Midwest, Southeast, and Southwest. A total of 646 accounts were used.   

Results were generated separately for curtailed and uncurtailed accounts because error is 
measured differently for the two types. Also, summer and non-summer curtailment period results were 
produced separately to allow for season-related baseline performance issues. Furthermore, because 
account type (commercial, industrial) was not known for all accounts, accounts were, instead, classified 
as weather-sensitive or non-weather-sensitive and low or high variability.   

 
Weather-Sensitivity 
 

Accounts were classified as weather-sensitive or not based on the diagnostics from a weather 
model fit. The weather model used was an hourly degree-hour model based on a full year of load data, 
with the degree-day bases estimated as part of the model. This is model �E� as defined above, except 
that the degree-day bases are parameters estimated by the model. The classification model diagnostics 
determined if the heating and/or cooling coefficients should be dropped from the model. If cooling 
coefficients were retained, the account was considered weather-sensitive for the summer analysis. If 
heating coefficients were retained, the account was considered weather-sensitive for the non-summer 
analysis. 
 
Load Variability 
 

Accounts were also classified as high or low variability. Variability was assessed not in terms of 
how �flat� the load was across the day, but how much the load at a given hour varied from day to day. 
For loads that are more highly variable in this sense, any projection based on previous days is likely to 
have greater error. That is, baselines and corresponding demand reduction estimates for these accounts 
will be subject to greater uncertainty. 

The account variability was measured in terms of the root-mean-square deviation of load in each 
hour from the corresponding mean for that hour, relative to the root-mean-square load during these 
hours. This statistic is similar to a coefficient of variation for load during peak hours.   

Within each season and curtailment type (summer or non-summer, curtailed or uncurtailed) the 
cut-off between high and low variability was set so that approximately one-quarter of the accounts were 
in the high-variability group.   

The numbers of accounts and median size by weather-sensitivity, variability, and sector if known 
are indicated in Table 4. 



Table 4.  Accounts Used in the Analysis 

 

Weather-
Sensitive Variability

Non-
Industrial Industrial Unknown Total

Range of Median 
Load (kW)a

Yes Low 62 77 123 262 495 � 2,381
Yes High 7 19 20 46 276 � 1,416
No Low 42 127 71 240 985 � 4,915
No High 3 67 28 98 591 � 3,870
a Range of median loads across four groups: non-summer/summer by curtailed/uncurtailed

Number of Accounts

 
 
Performance Measures 
 

The tests were run for several alternative methods on several different data sets for several hours 
on several days. Developing meaningful measures of method performance is essential to provide a basis 
for conclusions. Performance measures provided are somewhat different for uncurtailed and curtailed 
accounts. 

The goal of the performance tests is to assess the accuracy of the various baseline methods 
tested. Accuracy has two aspects. One is lack of bias. Bias is a systematic tendency to over- or 
understate the baseline and the corresponding demand reduction. The second aspect of accuracy is 
variability. A method may be close to unbiased; that is, to be close to correct on average, yet have a high 
variance, meaning it tends to have large errors in either direction. Methods that have high variance are 
unreliable and add risk to program participation and operations.   
 The performance measures are based on the hourly error. For uncurtailed accounts, this is the 
difference between estimated and actual load. For curtailed accounts, where no actual uncurtailed load 
exists, it is necessary to choose one method to be the standard by which other methods are compared. 
Thus, for curtailed accounts, the error is difference between the estimated load and the chosen method 
estimate of load.   

Because accounts in this study are of widely varying sizes, when looking at the range of errors 
across accounts, we need to normalize them. For uncurtailed accounts, the error for each hour for each 
account is expressed as a fraction of the actual load for that hour and account. For curtailed accounts, the 
error for each hour for each account is expressed as a fraction of the chosen method�s estimated load for 
that hour and account. 
 
Bias 
 

As a key measure of bias, we focus on the median relative hourly error. If the median, across all 
accounts and curtailment hours, of these relative hourly errors is positive, then more often than not the 
baseline load shape will be overstated and the magnitude of DR is overstated. If the median of the 
relative hourly errors is negative, then more often than not the baseline is understated and the magnitude 
of DR is understated. 
 
Overall Error Magnitude 
 

As a key measure of the total magnitude of error, we consider Theil�s U statistic for each 
account. This statistic is a �relative root-mean-square error.� It is calculated for each account as the ratio 
of the root-mean-square error to the root-mean-square load.   



The root-mean-square error is like a standard deviation, and represents the typical error 
magnitude for the account. This root-mean-square error reflects both systematic error, or bias, and the 
level of variability around the typical error.   

The root-mean-square load is a corresponding �typical� load level. Normalizing the root-mean-
square error by the root-mean-square load is something like calculating a correlation coefficient. It 
provides a normalized measure of variability, regardless of different load levels. However, the U statistic 
may be greater than 1, since errors can be greater than the loads they estimate.   

Theil�s U statistic calculated for a given account indicates the typical relative error magnitude for 
that account. The distribution of this statistic across accounts indicates the range of performance. We 
look at this distribution in terms of both the median and an extreme, the 95th percentile. The median 
Theil�s U statistic indicates the typical relative error magnitude for a typical account. The 95th percentile 
indicates typical performance for the accounts where the performance is generally worse.   
 
Results 
 

The following graphs provide an example of the kinds of results generated in this analysis. The 
codes for the different combinations of model forms and selection rules are indicated in Tables 1 
through 3 above. 

As discussed, each data selection rule/estimation method combination can be adjusted. The six 
different adjustments are indicated by different symbols in the graph below (Figure 2). As indicated 
above, the temperature-humidity index-based adjustment is only appropriate for models without a 
weather variable in the estimation method. 
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Figure 2.  Median Relative Hourly Error Summer Uncurtailed Weather-Sensitive 
Low-Variability Accounts 



Figure 2 provides the median bias results for the various protocols tested. These results apply to 
summer uncurtailed weather-sensitive low-variability accounts, one of the 16 different account types 
studied. The most striking result illustrated in this graph is downward bias of unadjusted averaging 
methods. 

Figure 3 provides the Theil�s U results for the same account type and in the same basic format. 
Theil�s U statistic is a measure of variability, similar to a relative root-mean-squared error. These results 
indicate that adjustments not only generally decrease bias but also lower the variability as well. 
Conclusions from the test results across the various account types are summarized below. 
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Figure 3.  Median Account Theil�s U Summer Uncurtailed Weather-Sensitive 
Low-Variability Accounts 

 

Overall Results Summarized 
 

The findings described below indicate the effects of various method features on bias and 
variability as measured in this study for the accounts and specific methods tested. These results offer 
general guidelines, but the performance of a particular method in a particular situation may be different. 

 
Adjustments 
 

An additive adjustment to 2 hours before curtailment can often reduce the bias and variability of 
almost all methods, including weather models, for weather-sensitive or non-weather-sensitive, high- or 
low-variability accounts. Other types of adjustments can improve the performance of averages, but 
generally with higher bias and variability. 



With this additive adjustment, simple averages in most cases perform essentially as well as 
complex weather models, even for weather-sensitive accounts. Without adjustment, most averages tend 
to understate the baseline load and therefore understate the load reduction during the curtailment period. 

On the other hand, additive adjustment to the last 2 hours can be problematic for several reasons: 
• It opens the possibility of gaming by deliberately increasing load just before the curtailment 

period to boost the baseline. 
• Legitimate pre-cooling in response to a curtailment notice or expectation will also 

erroneously increase the estimate of the baseline load. 
• Conversely, an operation that achieves its curtailment target promptly upon notification and 

before the beginning of the required curtailment period will have a severely understated 
baseline. 

A next step under consideration for this study is to examine the effectiveness and fairness of alternative 
rules for screening out both gaming and appropriate operational effects that result in distorted baselines. 
 
Data Selection 
 

The bias and variability of weather models tend to be reduced by longer input data series, but not 
dramatically. The decreased variability with longer input series is more noticeable for conditional 
weather models applied to non-weather-sensitive accounts, particularly high-variability accounts. 

The different averaging methods performed similarly in terms of bias and variability, except for 
those that select a subset of days based on high load. For summer loads, the High 5 of 10 average 
generally reduces the otherwise negative bias. For summer loads using additive adjustment, High 5 of 10 
gave the lowest bias measure of any of the averages, for both weather-sensitive and non-weather-
sensitive accounts, and comparable variability. The High 10 of 11 average gave some bias reduction, but 
not as much.   

For non-summer loads, however, the High 5 of 10 average inflates an already positive bias. The 
other averages perform better and roughly comparably to each other, in terms of both bias and 
variability, for both weather-sensitive and non-weather-sensitive accounts. The High 10 of 11 is 
somewhat better than the others in terms of the bias and variability measured in this study. 

 
Weather Modeling 
 

For summer weather-sensitive accounts, weather models tend to perform somewhat better than 
averages, but the difference is not dramatic. For non-summer loads, weather models do not perform 
better than averages. 

For summer non-weather-sensitive accounts, use of a �conditional� weather model does not 
increase bias or variability. The conditional weather model automatically deletes weather terms if the 
statistical diagnostics based on the load data indicate these terms are inappropriate for a particular 
account. Use of such diagnostics protects against retaining terms in the model that are not well-
determined and are likely not to be meaningful. Thus, if weather models are used, a single methodology 
can be applied to both weather-sensitive and non-weather-sensitive accounts.   
 
Pros and Cons of Alternative Approaches 
 

Advantages and disadvantages of key method features in terms of the criteria indicated in the 
Background Section are summarized in Table 5. This table is based on both qualitative considerations 
and the results of the performance tests. 
 



Table 5.  Advantages and Disadvantages of Key Baseline Method Features 
Based on Qualitative Considerations and Test Results 

 

Baseline Method Variant Pros Cons
Average Any Simple, easy to use and understand, 

low cost
Tends to understate baseline for weather-
sensitive loads, especially if unadjusted

High 5 of last 10 
days

Partial adjustment for weather-sensitive 
loads

Still tends to understate baseline for weather-
sensitive loads
Can allow windfall load reduction credit on cool 
days

Regression Any Provides baseline corresponding to 
particular weather conditions of 
curtailment day

More complex, harder to understand, higher 
cost

If observations don�t include conditions as 
extreme as the curtailment day, model estimate 
may be inaccurate
If account isn't weather-sensitive, may be less 
accurate than simpler methods

Full Season Adequate data and range of variation to 
yield accurate coefficients

Operating conditions from the period data are 
taken from may be different from curtailment 
day

Recent 10 days Operating conditions more likely to be 
similar to curtailment day

Model based on limited data may be inaccurate

Lag temperature/ 
degree-day

Tends to reduce bias for weather-
sensitive accounts

Tends to increase variability of baseline 
estimate.

Conditional Allows same general form and 
procedure to be used for weather-
sensitive and non-weather-sensitive 
accounts, without pre-screening.  
Doesn't add much error for non-weather-
sensitive accounts.

More complex.  May give less consistent results 
across events for an account, if weather terms 
are sometimes retained and sometimes not.

Adjustment to 
precurtailment hours

Any Simple, easy to use and understand, 
low cost

May be potential for gaming behavior during day-
of-curtailment adjustment period

Adjusts to weather and operating 
conditions of curtailment day

Appropriate pre-curtailment increase in load 
(e.g., pre-cooling) will result in overstated 
baseline

Limits potential for collecting windfall 
credits for planned shut-downs

Pre-curtailment decrease in load in response to 
curtailment request (e.g., long ramp-down, 
canceling a shift) will result in understated 
baseline

Additive May adjust well for load change that is 
constant throughout day (e.g., industrial 
processes)

May not be appropriate if load changes during 
curtailment period (ratio adjustment may be 
better suited)

Scalar May adjust well for load change that is 
function of exogenous factor throughout 
day (e.g., higher levels of occupancy)

May not be appropriate if the day-to-day load 
variation is constant over the day (additive 
adjustment may be better suited)

to last 2 hours 
before curtailment 
period

If load in these hours is unaffected by 
anticipated or initiated curtailment, 
provides best accuracy

If substantial curtailment is initiated in these 
hours, severely understates baselines

to 3rd and 4th hour 
before curtailment 
period

Less potential for understated baseline 
due to pre-curtailment-period demand 
response

More variability than adjustment to last 2 hours

Weather-Based Adjustment Any Explicitly takes into account weather 
conditions

Adjustment may not be known to customer until 
after curtailment period  (i.e., until after weather 
conditions are known for the day)

No opportunity for gaming as with 
adjustment to precurtailment hours

If no observations are available for extreme 
conditions, estimates used for adjustment may 
be outside range of model
Will badly predict load reductions if the buildings 
are dominated by internal loads
Less accurate than alternative adjustments or 
weather model for both weather-sensitive and 
non-weather-sensitive accounts



Recommendations 
 

In developing our recommendations, we did not attempt to score each method or feature with 
respect to each of the desirable features indicated above, nor assign explicit weights to the criteria. In 
general, our approach is: 

• allow for options that recognize different customer or premise circumstances,  
• favor simplicity if the potential accuracy gains of greater complexity appear to be slight, and 
• indicate alternatives and trade-offs with respect to the criteria. 

 
Proposed Approaches by Account Type 
 
Offering Options.  A general recommendation is that baseline calculation protocols should provide for 
alternatives based on customer load characteristics and operating practices. One way to simplify the 
provision of options is to establish a default method and allow certain deviations.   

The basis for the selection of a method should be not just the customer�s business type, but also 
the load patterns evident in the data as well as the customer�s description of operating practices. Thus, 
for example, a customer who indicates a desire to be able to cancel a shift in advance of the control 
period should have access to a baseline calculation method that is not distorted by this practice. 

At the same time, the program operator should have some discretion to bar customers from using 
an approach that they appear to have manipulated in the past. Thus, if there is evidence that a particular 
customer tends to inflate the baseline load after notification, beyond what would reasonably be expected 
for pre-cooling, that customer might not be able to use a method that includes adjustment to the 2 pre-
curtailment hours. 

 
A Practical Default Baseline Calculation Method.  A method that generally works well for a range of 
account types is the simple average of the last 10 days, with additive adjustment to the load shape 2 
hours prior to the curtailment period (in Figures 2 and 3, method A1 with additive 1-2 adjustment). This 
method can be recommended for both weather-sensitive and non-weather-sensitive accounts, with both 
low and high variability, for summer and non-summer curtailments. For most account types, the method 
gets high marks in terms of the criteria listed in the Background Section above. Table 6 describes in 
detail the practical default baseline calculation method. 

 
Table 6.  Step-by-Step Explanation of the Recommended Default Baselinea 

Unadjusted Baseline Calculation  
Get interval load data for the previous 30 days. As little as two weeks of 
data may be needed, but this will depend on the number of curtailment 
exclusions. 

Ldh = load at hour h of day d 
I = initial set of days for which data 
are taken 

Remove weekends, holidays and previous curtailment days. Curtailment-
day exclusions can be determined either by general program 
implementation or specific participation by the account in question. The 
latter is more flexible but also more complicated. 

E = set of eligible days after these 
exclusions 
E⊂ I 

Keep the ten most recent days of the remaining interval data. F = final set of 10 most recent days 
F⊆ E 

For each hour of the day, calculate the average load at that hour across  
the ten days. This is the unadjusted baseline. hL = unadjusted baseline for hour h 

    = (1/10)Σd∈F Ldh 

 
� continued � 



Table 6 (cont).  Step-by-Step Explanation of the Recommended Default Baselinea
 

Adjustment Calculation  
Get interval load data for the curtailment day. L0h = curtailment-day load at hour h 
Based on the announced curtailment period, identify the last two, full 
hourly intervals immediately preceding curtailment start. These two hours 
will be the adjustment hours, hours 1 and 2 prior to the curtailment (e.g., 
hour ending 12 and 13 for a curtailment starting at 13:15). 

h0 = first hour of curtailment period 
h-1 = first hour preceding curtailment 
h-2 = second hour preceding 
curtailment 

Average the curtailment-day load for the two adjustment hours. L-0-12 =  (1/2) (L0h-1 + L0h-2) 
Average the unadjusted baseline load (from #4) for the two adjustment 
hours. ( ) ( )− − −= +12 1 21/ 2 h hL L L  

Subtract the baseline average (#7) from the curtailment-day average (#6) 
to produce the additive adjustment increment. 

A = L-0-12 � −12L  

Adjusted Baseline Calculation  
Add the adjustment increment to the unadjusted baseline load at each 
hour. As an easy visual check, a properly adjusted baseline will cross the 
actual curtailment-day load between the two adjustment hours.   

LBh = Baseline load at hour h 

= +hL A   

Demand Response Calculation  
For each hour of the curtailment period, subtract the curtailment-day load 
from the adjusted baseline load. 

DRh = demand reduction at hour h 
= LBh � L0h 

a This explanation uses hourly intervals, but the same process can be applied at finer intervals. 
 

This method is not recommended for accounts that tend to reduce load in advance of the required 
period in response to a curtailment notice. It is also not recommended for situations where the potential 
for gaming is a strong concern, whether across the program or for particular customers. Alternatives that 
can be used for different types of accounts are indicated in Table 7. 
 

Table 7.  Suggested Default and Alternative Methods for Estimating a Customer- and 
Event-Specific Baseline Energy-Use Profile, by Account Type and Season 

 
 

Season:

Weather Sensitivity:
Variability: Low High Low High Low High Low High

DEFAULT: Simple average with additive adjustment to the 
1st and 2nd hour prior to curtailment X X X X X X X X
ALTERNATIVES:
Simple average with additive adjustment to the 3rd and 4th 
hour prior to curtailment X X X X
Weather model without adjustment, but with diagnostics 
determining whether heating and/or cooling terms are kept X X X
Use only the highest five of the last 10 days in the averages, 
with scalar adjustment based on a Temperature-Humidity 
Index load model. X X X
Use only the highest five of the last 10 days in the averages, 
without adjustment to the control day. X
Use the highest 10 of the last 11 days in the averages, 
without adjustment to the control day. X X X X
Additive adjustment:   The adjusted baseline is calculated by adding a fixed amount A to the unadjusted baseline for each hour.

Scalar adjustment:   The adjusted baseline is calculated by multiplying the unadjusted baseline for each hour by a fixed amount S.
Adjustment to k to k+1 hours before curtailment:  The adder A or scalar S is calculated so that the adjusted baseline matches the average observed 
load over the period k to k+1 hours before the start of curtailment.
Weather model:  Hourly load data from non-curtailed days is fit by a regression model using weather and calendar variables.  The baseline is the 
fitted model applied to the observed conditions of the curtailment period.

Summer Nonsummer
Weather-
Sensitive

Non-Weather-
Sensitive

Weather-
Sensitive

Non-Weather-
Sensitive



Conclusion 
 

A practical and credible baseline calculation method can improve participation and confidence in 
DR programs. To meet this objective, a baseline method needs to balance a number of practical 
considerations as well as prediction accuracy. Different methods are appropriate for different types of 
accounts, and according to the importance assigned to the different considerations. In developing 
options and recommendations, our approach has been  

1. allow for options that recognize different circumstances, and 
2. favor simplicity if the potential accuracy gains of greater complexity appear to be slight. 
This work is intended to provide the foundation for a protocol that may be adopted as part of the 

IPMVP Protocol. An IPMVP Protocol, by nature, will offer options and guidance rather than be 
prescriptive. This first step toward a Protocol can serve as the basis for establishing specific rules and 
procedures within a jurisdiction. Equally important, this work can provide a common language for 
describing, debating, and understanding these procedures. 
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