
IEPEC Long Beach 2015 1

IEPEC Long Beach 2015

Is More Always Better? A 
Comparison of Billing Regression 
Results Using Monthly, Daily, and 
Hourly AMI Data

John Cornwell
Evergreen Economics



IEPEC Long Beach 2015 2

Presentation Outline

Comparison of Billing Regression 
Results Using Monthly, Daily and 
Hourly AMI Data

• Research Overview & Background

• Methodology

• Results

• Discussion
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Research Overview

• Goal: Compare billing regression models 
using data aggregated at monthly, daily 
and hourly levels from a single AMI data 
source.

• Research Questions:

 Do savings estimates change across 
different aggregation levels?

 Does the precision of savings 
estimates change across different 
aggregation levels?
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Advanced Metering Infrastructure 
(AMI)

• What is AMI?

• AMI data allow investigation of 
consumption at finer time intervals

• 30% homes have AMI nationally

• Rapidly expanding to more homes

• Will (hopefully) become standard 
data available to evaluators
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Levels of Aggregation
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AMI Billing Regression Research Project

• Compare FE billing regression based 
on hourly, daily, and monthly data

• Hourly AMI data for 678 homes in 
California

• New air conditioner installed between 
January 2013 and December 2014

• Each home has at least 9 months of 
billing data pre and post installation
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Data Aggregation

• Hourly Dataset:
 Hourly kW for 678 homes

 Hourly temperature data (NOAA)

 Hourly cooling / heating degree hours (Base 65°) 

• Daily Dataset:
 Daily kWh = Σ(Hourly kW)

 Daily degree days = Σ(Degree hours)

• Monthly Dataset:
 Monthly kWh = Σ(Daily kWh)

 Monthly degree days = Σ(Degree days)
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Data Aggregation

Observations Households
Average 
kWh

Average 
CDD

Average 
HDD

Monthly 15,921 678
785.87 
(25.85)

191.98 162.10

Daily 471,534 678 26.54 7.65 6.53

Hourly 11,311,219 678 1.10 .27 .23
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Fixed Effects Model Specification
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• Monthly Model:

 kWh = Average Daily kWh

 Weather = Monthly HDD / CDD (Base 65°F)

• Daily Model:

 kWh =Actual Daily kWh

 Weather =Daily HDD / CDD (Base 65°F)

• Hourly Model:

 kWh =Actual Hourly kW

 Weather =Hourly HDH / CDH (Base 65°F)
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Fixed Effects Model Specification
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 Savings Equation:

 Confidence Intervals developed using 
Delta Method
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Model Results
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Discussion

• Do savings estimates change across 
different aggregation levels?

 Yes. Estimates of savings increased 
approximately 9 percent from monthly to 
hourly data.

• Does the precision of savings estimates 
change across different aggregation 
levels?

 Yes. We find more precision around our 
savings estimates with more granular data.
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Discussion

• Limitations of models based on 
monthly or daily data:

 Cannot reveal time of day savings:

– Different measures may provide savings at 
different times of day

 Cannot distinguish peak period savings

• Hourly interval data (or finer) -
opportunity to identify time of day 
savings and peak period savings
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Hourly Savings Estimates
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Future Research

• Alternative modeling approaches for AMI data

 Example: Random coefficients model:

– Estimates hourly savings
– Estimates savings across home types and day 

types

• Compare billing regression using traditional 
monthly bill data and monthly AMI data
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Summary

• AMI data provide opportunity to estimate billing 
regressions at more granular time intervals

• Savings estimates increase when fixed effects 
billing regression models used more granular 
time interval data

• Precision of savings estimates improves when 
fixed effects billing regression models used more 
granular time interval data

• Hourly (or finer) AMI data provides opportunity to 
identify time of day savings / peak period savings
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Questions?

John Cornwell

cornwell@evergreenecon.com

(503) 741-8227

Evergreen Economics

Berkeley, CA and Portland, OR 


