# Order-Independent Waterfall Graphics to Display Comprehensive Impact Evaluation Results

#### International Energy Program Evaluation Conference (IEPEC) 2015

Robert Kasman, Adam Scheer, Rachel Sackman Allen, Rafael Friedmann, and Janice Berman

Pacific Gas and Electric Company, San Francisco, CA



# Coauthors



**Adam Scheer** 



**Rachel Sackman Allen** 







**Janice Berman** 





# **Impact Evaluation Audiences**

- Program Managers/Planners
- Regulators
- Ratepayers
- Policymakers
- Procurement Planners
- Public Stakeholders

Each group has unique evaluation goals and needs.

## **Typical Impact Evaluation Reporting:**



### **First Limitation:**

• Does not expose the *reasons* behind ex ante (reported) and ex post (evaluated) discrepancies

# **Impact Parameter Reporting for a More Complete Picture**

|                          | <b>Ex Ante</b>         | <b>Ex Ante</b>          | <b>Ex Post</b>        |        | Ex Post                  | Ex Pos   | st             |                        |
|--------------------------|------------------------|-------------------------|-----------------------|--------|--------------------------|----------|----------------|------------------------|
| _                        | <b>Gross Savings</b>   | Net Savings             | <b>Gross Savings</b>  | GRR    | NTG                      | Net Savi | ngs            |                        |
|                          | 100                    | 80                      | 50                    | 0.5    | 0.6                      | 30       |                |                        |
|                          |                        |                         |                       |        |                          |          |                |                        |
|                          |                        |                         | Impact Parameters     |        |                          |          |                |                        |
| Ex Ante<br>Gross Savings | Ex Ante<br>Net Savings | Ex Post<br>Gross Saving | Hours of<br>Use (HOI) | AWatts | In Service<br>Rate (ISR) | GRR      | Ex Post<br>NTG | Ex Post<br>Net Savings |
| 100                      | 80                     | 50                      | 0.70 x                | 1.14   | <b>x</b> 0.63            | = 0.5    | 0.6            | 30                     |

### **Benefits:**

- Provides insight to drivers of evaluation findings
- Provides actionable information for program and policy decisions
- Impact parameters are not new. Some evaluations do this already.
- But... it Enables construction of a 'Waterfall' graphic

# PG<mark>&</mark>E

## **The Gross Waterfall Graphic**



# Order-Independent Waterfall Graphics via Permutation

Second Limitation.

• What aboute statistic for the service of the service base decisions on met sapings results?





*Funhouse Mirror effect Solution*: Average all permutations of impact parameter adjustments.

This waterfall now shows order-independent gross impact parameter steps.

## **Conversion to a Net Savings Waterfall**

#### **Gross Waterfall**





Gross waterfall lacks a net savings comparison

30 Savings and Adjustments Gross and Net waterfalls together provide comprehensive impact reporting

- Links differences between ex ante and ex post savings ۲
- Quantifies adjustments without distortion, including NTG
- **Provides insights to program improvements**
- Can be done at portfolio level: steps represent different programs ٠ 7



**Net Waterfall** 

### • New Example: Both Gross and Net Waterfalls are Essential for Comprehensive Impact Evaluation Results

|                      | Impact Parameters |                      |           |               |            |      |         |             |
|----------------------|-------------------|----------------------|-----------|---------------|------------|------|---------|-------------|
| <b>Ex Ante</b>       | Ex Ante           | Ex Post              | Hours of  |               | In Service |      | Ex Post | Ex Post     |
| <b>Gross Savings</b> | Net Savings       | <b>Gross Savings</b> | Use (HOU) | <b>ΔWatts</b> | Rate (ISR) | GRR  | NTG     | Net Savings |
| 100                  | 05                | 24.2                 | 0.70      | 0.70          | 0.70       | 0.34 | 0.5     | 17.2        |

#### **Gross Waterfall**

### **Net Waterfall**



Appendix: The Pathways to Ex Post Net Saving

Traditional Evaluation:

 $Gross_{XA} \cdot GRR = Gross_{XP}$ 

 $Gross_{XP} \cdot NTG_{XP} = Net_{XP}$ 

**Policy Framework:** 

 $Gross_{XA} \cdot NTG_{XA} = Net_{XA}$ 

 $Net_{XA} \cdot NRR = Net_{XP}$ 

$$Net_{XP} = Gras_{XA} \cdot GRR \cdot NTG_{XP} = Gras_{XA} \cdot NTG_{XA} \cdot NRR$$

 $NTG_{XP} \cdot GRR = NTG_{XA} \cdot NRR$   $NRR = GRR \cdot \frac{NTG_{XP}}{NTG_{XA}}$ 

### • Example: Both Gross and Net Waterfalls are Essential for Comprehensive Impact Evaluation Results

|                      | Impact Parameters |                      |           |        |            |       |         |             |
|----------------------|-------------------|----------------------|-----------|--------|------------|-------|---------|-------------|
| <b>Ex Ante</b>       | <b>Ex Ante</b>    | Ex Post              | Hours of  |        | In Service |       | Ex Post | Ex Post     |
| <b>Gross Savings</b> | Net Savings       | <b>Gross Savings</b> | Use (HOU) | ΔWatts | Rate (ISR) | GRR   | NTG     | Net Savings |
| 100                  | 60.0              | 75.6                 | 0.90      | 0.70   | 1.2        | 0.756 | 0.8     | 60.5        |

### **Gross Waterfall**

### Net Waterfall

