

Pop Quiz! LED Lighting Can Generate Significant Savings in Nonresidential Buildings?

**Brian McAuley** 

2015 IEPEC Conference — Long Beach, California

## Agenda

### Introduction

#### Background

- □ CPUC impact evaluations
- Data Collection
- Impact Parameters
  - □ Installation Rates
  - □ Operating Hours
  - □ Wattages
- Conclusions and Recommendations

## Introduction

Focus of LED Impact Evaluations

### LED Lamps

### LED Reflector Lamps





IEPEC Long Beach 2015

## Background

#### Rebated LED Lamps and Reflector Lamps by 3 California IOUs

Percent ex-ante savings represents all deemed/non-residential/downstream lighting measures



## Background

#### Rebated LED Lamps and Reflector Lamps by 3 California IOUs

Percent ex-ante savings represents all deemed/non-residential/downstream lighting measures



## Background

**CPUC** Impact Evaluations

- 2010-12 LED Impact Evaluation
  - □ 2010 2013 (Q2)
  - □ 200+ on-site visits
  - $\Box$  ~400 lighting loggers installed
- 2013 Nonresidential Deemed ESPI Lighting Impact Evaluation
  - □ 2013 2014 (Q2)
  - □ 150+ additional on-site visits
- 2013-14 Nonresidential Deemed ESPI Lighting Impact Evaluation
  - □ Final results not included here (2016)
  - □ 2013 2014 (Q4)
  - □ 250+ additional on-site visits
  - □ ~1,000 additional lighting loggers

## **Data Collection**

Participant Phone Survey and On-Site Verification

### Phone Survey

Stratification by Building type and Lamp Type

### On-Site Verification

- Measure Installation
  - Installation rates
    - □ Installed and operable, in storage, removed, failed?
  - Activity Areas
    - □ Where were measures installed and how many?
    - □ Customer self-reported schedule for each area
- Wattages
  - Retrofit lamp wattage
  - Baseline equipment

## **Data Collection**

Time of Use (TOU) Monitoring and Adjusted Self-Reports

### Lighting Loggers

- □ 9 week average
- □ Extrapolated to a full year (8,760 hours)
- Self-Reports and Business Hours
  - Business Hours
    - Identify open, closed, shoulder periods
    - Develop a usage rate (based on actual logger data) for closed and shoulder periods
  - □ Adjusted Self Reports
    - Ratio of actual usage to self-report during open hours

## **Data Collection**

Example Application of Adjustments/Usage Rates for Small Office



### **Installation Rates**

#### LED A-Lamps



### **Installation Rates**

LED Reflector Lamps



IEPEC Long Beach 2015

## Installation Rates

Reasons for Removal and Failure Period

### Removal Rates

□ Light was too bright

Replaced by incandescent or halogen lamps

Light was too directional

- Replaced by incandescent or halogen lamps
- □ Remodel and did not replace
- □ Office tenants removed them

### Failure Rates

□ 6-8 month average

## **Operating Hours**

### **LED A-Lamp**

- Lodging
  - □ 882 hours
  - □ 23 sites
    - Guest rooms 96%
    - Hallway/Lobby 43%
- Small Office
  - □ 1,024 hours
  - $\Box$  46 sites
    - Restrooms 76%
    - Hallway/Lobby 26%

### **LED Reflector Lamp**

- Large Retail
  - □ 3,682 hours
  - □ 8 sites
    - Retail Sales 100%
- Small Office
  - □ 1,822 hours
  - □ 38 Sites
    - Office 47%
    - Hallway/Lobby- 29%

## **Operating Hours**

### **LED A-Lamp**

- Small Retail
  - □ 883 hours
  - □ 43 sites
    - Restrooms 72%
    - Storage 21%
- Restaurants
  - □ 3,403 hours
  - □ 68 sites
    - Dining area 60%
    - Restrooms 53%

### **LED Reflector Lamp**

- Small Retail
  - □ 3,443 hours
  - □ 45 sites
    - Retail Sales 76%
    - Office 16%
- Restaurants
  - □ 3,752 hours
  - □ 77 Sites
    - Dining area 77%
    - Hallway/Lobby- 16%

### **Baseline Wattage**

- Installed non-retrofitted equipment
- Baseline lamps in storage
- Review of any documentation
- Customer self-report
- Average wattages

### **Retrofit Wattage**

- Collection of wattage information from lamp
- Average wattages
  - When lamps were inaccessible beyond visual verification (~2%)

LED A-Lamps



IEPEC Long Beach 2015

LED Reflector Lamps



Distribution of Baseline Equipment



## Conclusions

### **LED A-Lamps**

#### Installation Rates

- □ 91% average
- Removal/storage/failure rates

#### Operating Hours

- Generally installed in lower usage areas (restrooms)
- □ Restaurant dining areas

#### Wattages

- □ 9W average
- Generally replacing incandescent (some CFL)

### **LED Reflector Lamps**

#### Installation Rates

- □ 93% average
- Removal/storage/failure rates

#### Operating Hours

- Generally installed in higher usage areas (dining/retail)
- □ Restaurant dining areas

#### Wattages

- □ 13W average
- Generally replacing halogens (some CFL and incandescent)

## Recommendations

For Future Impact and Market Studies

#### Measure disposition

- □ Installed...Failed...Removed...Stored?
- □ More importantly...Why?
- Measure installation
  - □ Where are the measures being installed?
    - Low usage vs High usage areas
    - Changes in the distribution of activity area will affect operating hours
- Make and Model information
  - □ More detailed wattage information
  - □ Rated lamp life (EUL consideration)
  - □ Identify failing and removed products

## Recommendations Continued

For Future Impact and Market Studies

#### Baseline Lamp Characteristics

- □ What is being replaced?
- □ Halogen or Incandescent to LED? CFL replacement?
- $\Box$  Changes in distribution of baseline wattage will affect  $\Delta$  wattage

### Lighting Logger Data

- □ Building types and activity areas
  - Not only where the measures are being installed, but the load profile of those buildings and areas
  - Significant impact on peak demand and annual operating hours
  - Effective useful life (EUL) of the measures

# Questions?

#### Brian McAuley Itron, Inc. brian.mcauley@itron.com