

#### Water Saving Devices Save More Energy Than You Think

#### **Kelly Parmenter**

2015 IEPEC Conference — Long Beach, California



#### I'm not really talking about non-energy benefits



#### I'm talking about embedded energy savings



IEPEC Long Beach 2015

## What is Embedded Energy?

- Energy required in the lifecycle of a product or service
- Our focus  $\rightarrow$  water supply and treatment

Collecting, treating, storing, and transporting water and wastewater



# The Project

Research question

□ What is embedded energy in water saving measures?

#### Team

Donney Dorton, OG&E

Ray Ehrhard, Washington University

□ Kelly Parmenter and others, AEG

#### Length

□ 5 months



### Approach

- Literature review
- Primary data collection
- Analysis of energy intensity, El (kWh/MG)
- Recommendations



# Literature Review

- Water-energy programs
- Embedded energy studies
- Industry-wide energy intensity (EI) estimates
  - → Recent EPRI/WaterRF study we conducted





## **Drinking Water El Estimates**

Estimated Average Energy Intensity by Source of Water in U.S. Public Water Supply

| Source of Water       | Energy Intensity (kWh/MG) |
|-----------------------|---------------------------|
| Surface               | 1,600                     |
| Groundwater           | 2,100                     |
| Desalination          | 12,000                    |
| Weighted U.S. Average | 2,070                     |

Source: *Electricity Use and Management in the Municipal Water Supply and Wastewater Industries*, EPRI, Palo Alto, CA and WaterRF, Denver, CO: 2013.



### Wastewater EI Estimates

Estimated Average Energy Intensity by Treatment Type in the U.S. Municipal Wastewater Industry

| Type of Treatment      | Energy Intensity (kWh/MG) |
|------------------------|---------------------------|
| Less than secondary    | 750                       |
| Secondary              | 2,080                     |
| Greater than Secondary | 2,690                     |
| No Discharge           | 2,960                     |
| Pumping Reuse Water    | 1,280                     |
| Partial                | 830                       |
| Weighted U.S. Average  | 2,520                     |

Source: *Electricity Use and Management in the Municipal Water Supply and Wastewater Industries*, EPRI, Palo Alto, CA and WaterRF, Denver, CO: 2013.



## Data Collection

- Interviewed key W/WW agencies
   Fort Smith, OKC, Ardmore, Muskogee
- Obtained system characteristics
  Plant type\_capacity\_daily\_flow\_number
  - Plant type, capacity, daily flow, number of pump stations, etc.
- Collected electricity data



# **Estimation of Energy Intensities**

#### El values vary with

- Treatment plant size
- Treatment type
- Water flow rates
- Pumping requirements



→ These aspects are reflected in regional variations



#### Energy Intensity vs. Avg. Daily Flow, OKC's WW Treatment Plants



AEG Applied Energy Group

### Results

| Location          | Energy Intensity, kWh/MG |            |       |  |
|-------------------|--------------------------|------------|-------|--|
|                   | Drinking Water           | Wastewater | Total |  |
| Oklahoma City, OK | 2,996                    | 1,806      | 4,802 |  |
| Ardmore, OK       | 1,470                    | 3,287      | 4,757 |  |
| Muskogee, OK      | 1,389                    | 2,274      | 3,663 |  |
| Fort Smith, AR    | 480                      | 1,917      | 2,397 |  |
| Weighted Average  | 2,401                    | 1,914      | 4,316 |  |

Also used the process in the EPRI/Water RF report as reality check for these findings



### Recommendation to OG&E

- For simplicity, use weighted average
  - Energy savings = 4.3 Watt-hr per gal avoided
  - Demand savings = 0.0005 W per gal avoided
- For greater accuracy, use regional values

Applied to PY 2013 and 2014 evaluation results



Figure Source: EPA



IEPEC Long Beach 2015

# Example of Impact on Savings

#### **Residential Faucet Aerator**

| Metric                                       | Home with Electric Water Heater                |
|----------------------------------------------|------------------------------------------------|
| Annual water savings                         | 381 gal/yr                                     |
| Embedded energy savings                      | (4.3 Watt-hr/gal) (381 gal/yr)<br>= 1.6 kWh/yr |
| Direct energy savings                        | 35 kWh/yr                                      |
| Overall energy savings                       | 36.6 kWh/yr                                    |
| Increase in impact over direct savings alone | 5%                                             |



# In Closing...

- Most programs only claim direct savings
- Els of W&WW not well known
- Embedded savings are real and quantifiable
- Approach extendable to other programs
- Deserves a place in policy discussion





# Thank you

#### Kelly E. Parmenter, PhD

Principal Project Manager Program Evaluation & Load Analysis Applied Energy Group kparmenter@appliedenergygroup.com (805) 693-9292; (805) 245-0550

