

Standard Approach to Non-Standard Projects

Kevin Warren, PE, Warren Energy Engineering, LLC Carter Membrino, PE, Warren Energy Engineering, LLC

2015 IEPEC Conference — Long Beach, California

Outline

The Problem The Measures The Options EUI Issues

Demand-side / Supply-side Efficiency Benefits

The Goal

Determination of energy savings in large custom industrial verification projects

- Consistent reduce cost, easier QA/QC
- Transparent
- Repeatable
- M&V Based

Challenges to Standardization

Custom resists standardization

- Unpredictable data availability
- Production dependent
 - Low granularity
 - Proprietary and confidential
 - Unclear Dependencies

To What Does it Apply?

- EE projects often affect support systems
 - Compressed Air
 - Process Cooling
- Projects typically involve an increase in a process' efficiency
- Some projects reduce a system's load

M&V Approach Options

Verification Only

- Option D
 - Building model not usually feasible for industrial facilities
- Option C
 - Savings too small for a large industrial project
- IPMVP Option A/B
 - Retrofit Isolation

Retrofit Isolation – A&B

- Leverage short term pre-installation and post-installation data
- Normalize and annualize to production
- Methods
 - □ Energy Use Intensity
 - Demand-side / Supply-side Efficiency Approach

Measurement Boundaries

Example Project

- Compressed Air
 - Demand Side Measures (air knives, solenoid valves)
 - Supply Side Measures (VFD Compressor)
- Customer Monitors
 - Production (daily)
 - CFM (hourly)
- Several weeks pre-install kW and post-install kW

Energy Use Intensity Approach

Divide energy use by production

- Can be useful
- Our fallback approach
- Required data is readily available
- Is easily misused or over-simplified
- Doesn't tell you much about why RR isn't 100%

EUI Example Analysis

Is this sufficient data?

Period	Production	Energy Use (average kW)	EUI
Pre-installation	1,500	750	0.5
Post-installation	2,000	900	0.45

EUI Example Analysis

Is this the savings?
0.5 x 2000 = 1000 kW Baseline
Savings = 1000 - 900 = 100 kW

Period	Production	Energy Use (average kW)	EUI
Pre-installation	1,500	750	0.5
Post-installation	2,000	900	0.45

Beware "Production Corrected"

Assumes linear AND intercept = 0

WARREN ENERGY ENGINEERING, LLC

IEPEC Long Beach 2015

Production

More typical EUI Dependence

		Enerov, Use			Linear Flat	
Period	Production	Energy Use (average kW)	EUI	1000 900 800		1.00 0.90 0.80
Pre-installation	1,500	750	0.5	700 600 ≹ 500		0.70 0.60 0.60 0.50 0.50 0.50 0.50 0.50 0.5
Post- installation	2,000	900	0.45	400 300 200	Base kW Post kW Base kW/Prod	- 0.40 - 0.30 - 0.20
			100 0	Post kW/Prod		

0

500

1000

1500

Production

2000

Linear, but nonzero intercept
At higher production, baseline would have been more efficient

IEPEC Long Beach 2015

2500

3000

Implications - typical EUI

		Eneron, Use		Linear Flat
Period	Production	Energy Use (average kW)	EUI	900 800 0.90 0.80
Pre-installation	1,500	750	0.5	700 0.70 600 0.60 ≥ 500 0.50
Post- installation	2,000	900	0.45	300 Post kW 0.30 200 Base kW/Prod 0.20
•Baseline 800 kW at 2000 Production			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Baseline 800 kW at 2000 Production
Negative savings

WARREN ENERGY ENGINEERING, LLC

IEPEC Long Beach 2015

Production

The DSE/SSE Approach

Demand Side Efficiency and Supply Side Efficiency

	Typical Efficiency Units			
Efficiency Type	Compressed Air Measures	Process Cooling Measures		
Supply Side (SSE)	kW/CFM	kW/Tons of Cooling		
Demand Side (DSE)	CFM/Production	Tons of Cooling/Production		

The Algorithm

Annual kWhsave = kWhbase - kWhpost

Where: $kWhbase = \sum_{i} (SSE_{pre,i} \times DSE_{pre,i}) \times production, i \times hours, i$ $kWhpost = \sum_{i} (SSE_{post,i} \times DSE_{post,i}) \times production, i \times hours, i$

DSE, SSE are curves or table, not constants

Required Data

Short term (1-3 weeks) kW data pre Short term output (CFM, tons)* data pre Short term (1-3 weeks) kW data post Short term output (CFM, tons)* data post Short and long term production data

*Or ability to calculate

Supply Side Efficiency

WARREN ENERGY ENGINEERING, LLC

Demand Side Efficiency

- Aggregate energy data to the interval of the production data
- Modes may be needed rather than regression
- Often not "pretty" but better than assuming a constant value

WARREN ENERGY ENGINEERING, LLC

Improved Savings Isolation

- Holding one term "unchanged" kWhbase = $\sum_{i}(SSE_{pre,i} \times DSE_{avg,i}) \times production, i \times hours, i$ kWhpost = $\sum_{i}(SSE_{post,i} \times DSE_{avg,i}) \times production, i \times hours, I$
- A main benefit of the approach
- Not holding a term constant, but "unchanged"

Improved Savings Isolation

 If expect there to be improvement but feel negative savings are unrealistic
 kWhbase = ∑_i(SSE_{pre,i} x DSE_{pre,i}) x production,i x hours,i
 kWhpost = ∑_i(SSE_{post,i} x DSE_{min,i}) x production,i x hours,I

IEPEC Long Beach 2015

Improved Insight into the Project

- Did the CFM increase?
- Did the SSE improve?
- How would the plant have behaved at the new production levels in the absence of the project?

Remember

When evaluating large non-standard custom industrial projects:

- Think in terms of DSE and SSE
- Hold one term unchanged, but not constant, when appropriate
- Use caution with EUI methods
- Real-time evaluation to ensure you get the data

Thank you!

kevin@warren-energy.com

610-869-7590 x101

IEPEC Long Beach 2015