MATCHING FOR EE AND DR IMPACTS

Seth Wayland, Opinion Dynamics

August 12, 2015

A Proposal

- Always use matching
 - Non-parametric preprocessing to reduce model dependence
 - Decrease bias and variance
 - Better understand your data
 - EE, DR
 - Quasi-Experiment
 - Randomized Experiment

Agenda

- Review current best practice for impact evaluation
- Review some matching methods
- Matching example

Impact Estimation

Best Practice

- RCT + Model (to reduce bias and variance)
- Quasi-experiment + Matching + Model

Methods

.....

Model

- Difference-in-Difference
- Linear Fixed Effects
- Lagged Dependent Variable
- Match
 - Propensity Score
 - Mahalanobis Distance
 - Coarsened Exact
 - Matching Frontier

5

IEPEC 2015

Feeling Lucky?

- Randomized experiments are guaranteed to be unbiased over repeated experiments
 - There is only one actual experiment
 - How sure can we be that this one is unbiased?
 - Check the balance of treatment versus control
 - What can we do?
 - Match to reduce imbalance
 - Model to correct for dependence on known and (fixed) unknown covariates

6

Applying the Rubin Causal Model

For a particular unit, the causal effect of a treatment at time t is the difference between what would have happened at time t if the unit was exposed to the treatment and what would have happened at time t if the unit was not exposed to the treatment.

7

Applying the Rubin Causal Model

- The customer cannot be simultaneously exposed to the treatment and not exposed to the treatment
- We need to make some assumptions
 - SUTVA
 - Ignorable treatment assignment

Ignorable treatment assignment

- Model
 - Parametrically adjust for the effect of covariates
- Match
 - Non-parametrically improve balance of all included covariates
- Both also usually reduce variance
- Matching yields insight into the data

Matching Procedure

- **1.** Select a distance measure
- 2. Select and implement a matching method
- **3.** Assess balance, return to 1 or 2 as necessary
- 4. Use the matched data to perform analysis

Matching Procedure - Considerations

- Choice of treatment effect (ITT, ATE, ATT, SATT, FSATT, etc.)
- Choice of variables to include in matching
- Choice of matching method
 - Choice of model in distance metric for Propensity Score matching
 - Choice of balance checks

Example

Home energy report program with an RCT design

Matching Methods

.....

- Exact
- K nearest neighbors
- Coarsened Exact
- Matching Frontier
- Many others

13

Balance Checks

- Difference in Means
 - Check all variables (don't use statistical significance)
- Average Mahalanobis Imbalance
 - Mean Mahalanobis distance between all matched pairs
- Median L1 Distance
 - Distance between multivariate histograms

When Matching Doesn't Help

- Coincident non-treatment changes
 - Some whole-house programs
- Missing information about treatment assignment
 - Opt-in bias?
- Modeling doesn't help either

Coarsened Exact

- N = 9,408, Nc = 9,355
- Median L1 distance: 0.09
 - Much better
- Average mean distance: 0.37 kWh/day
 - Somewhat worse

Coarsened Exact

Feasible Group

Non-Feasible

Group

IEPEC 2015

Coarsened Exact

- FSATT (N_f=9,408, N_c=9,355) savings = 4.3%
- NFSATT (N_{nf} =592, N_c =644) savings = 9.6%
- Weighted SATT ($N=N_c=10,000$) savings = 4.6%
- Full Sample SATT (N=N_c=10,000) savings = 4.8%

weighted SATT =
$$\frac{\text{FSATT} \cdot \text{N}_{\text{f}} + \text{NFSATT} \cdot \text{N}_{\text{nf}}}{\text{N}}$$

18

A Second Proposal

- How do we evaluate what are the best methods/approaches for impact evaluation?
- We need published data and well-defined metrics
- Common Task Method
 - Everyone works on the same problem
 - Method
 - Publish data
 - Define evaluation metrics
 - Periodic public evaluation of methods

IEPEC 2015

For More Information

Seth Wayland, Associate Director Opinion Dynamics swayland@opiniondynamics.com

IEPEC 2015

20

Thank you

xkcd.com/925

Distance Metrics

.....

- Exact
- Propensity Score
- Mahalanobis
 - Euclidian is a special case

22

IEPEC 2015

Match Anyway

- Methods
 - K nearest neighbors (1:1) with SATT
 - Propensity score distance
 - Mahalanobis distance
 - Coarsened Exact with weighted SATT
 - L1 distance

Balance Metrics

- Treated group N = 10,000
- Comparison group N_c = 10,000
- Average mean difference for the 12 months of the pre-period: 0.03 kWh/day
- Median L1 distance: 0.56

K Nearest Neighbors

- Propensity score metric
 - Simple model with a variable for each month of pre-period usage
 - N = 10,000 and $N_c = 5,580$
 - Average mean difference: -0.22 kWh/day
 - Balance is a little worse

K Nearest Neighbors

- Mahalanobis distance
 - N = 10,000 and $N_c = 5,762$
 - Average mean difference: 2.9
 - Balance is much worse

