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ABSTRACT 
A central problem for impact evaluation is how to minimize bias and model dependence in impact 

estimates. Precise estimates of a potentially-biased impact estimate can be misleading when the size of 

bias and model dependence is unknown or unreported. How do we know if the reported impact estimates 

are accurate? Designed experiments, where the participants are randomly assigned to the treatment or 

comparison group, offer the reassurance that “over repeated experiments” the control group will be 

equivalent to the treatment group. However, we only have one instance of the experiment. What if the 

control and treatment are not balanced? What if the program was not a designed experiment? We can use 

models to correct for the differences, we can use matching to improve balance and reduce model 

dependence, or both. 

Standard approaches to demand response and energy efficiency program impact analysis use 

regression models to adjust for the differences between the treatment and comparison groups that are not 

caused by the program. These methods perform well when the comparison group is equivalent to the 

treatment group so that the amount of model adjustment is small, the comparison group and treatment 

group have similar covariate distributions, and there are no outliers in the control or treatment groups. 

Using matching as non-parametric preprocessing can help reduce uncontrolled variation, identify outliers, 

help balance covariate distributions, and reduce model dependence and bias. For these reasons, we propose 

adding a matching step into the impact evaluation process. 

Introduction 
Impact evaluation is the science of comparing what would have happened in the absence of a 

program to what actually happened. Our central problem is the fundamental problem of causal inference: 

for any given unit, we cannot simultaneously observe both the unit's response when treated and it's 

response when not treated. Paraphrasing Rubin (1974), for a particular unit, the causal effect of a treatment 

at time t is the difference between what would have happened at time t if the unit was exposed to the 

treatment and what would have happened at time t if the unit was not exposed to the treatment. 

This paper discusses the implications of some of the choices we make as part of that comparison. 

We focus on the choice of treatment and comparison groups, and how to choose those groups to help 

minimize bias and variation in the impact estimates. This discussion applies to both observational quasi-

experiments which may have selection bias and randomized experiments, which, over repeated 

experiments, do not. There are many other issues in causal analysis that we do not cover here. See e.g. 

(Pearl and others 2009) (Lam 2009) (Keele 2014) (Stuart 2010) for much more. 

Causal inference using the Rubin Causal Model (Rubin 1974) requires two main assumptions: 

• Stable unit treatment value assumption (SUTVA)---The outcomes of any unit (individual) are not 

affected by the treatment assignment of any other units (individuals). An example where we see a 

violation of SUTVA is spillover, where comparison group members may e.g. learn about energy 

saving behaviors by talking to their treatment group neighbors. In the case of the home energy reports 

used in behavioral programs, the effect of spillover is likely to be so small that it can be safely 

ignored. 



 
2015 International Energy Program Evaluation Conference, Long Beach 

• Ignorable treatment assignment---For every unit, it must be possible that that unit could have been 

assigned to either treatment or comparison group. Further, that treatment assignment is independent 

of the outcome, given the covariates. This is sometimes called "unconfounded" or "no hidden bias." 

We can help insure ignorability through the combination of preprocessing by matching, followed 

by modeling. Both help to correct for the dependence of the outcome on covariates other than the treatment 

assignment. Modeling directly adjusts the estimate of the treatment effect by applying a statistical model 

to the outcome, making adjustments to the treatment estimate according to the values of covariates. 

Matching works less directly, by balancing the distribution of covariates between the treated and 

comparison groups. Balanced groups will only be different from one another on covariates not included 

in the matching process, and then only inasmuch as those covariates are uncorrelated with the covariates 

used in matching. 

Matching improves the balance of the distribution of all covariates included in the matching. For 

this reason, we want to include all covariates that are known to be (or could be) related to both treatment 

assignment and outcomes (Stuart 2010). However, we should not include any covariates that may have 

been affected by the treatment. 

When estimating treatment effects, we select from among a number of possible effects to measure. 

This selection is dependent on the design and the effect of interest. A few of these are: 

• Intention to Treat (ITT), which measures the effect on all units assigned to treatment, whether or not 

they complete treatment. 

• Average Treatment Effect (ATE), which measures the difference in outcomes for the treated group 

versus the comparison group. 

• Average effect of Treatment on the Treated (ATT), which is an estimate of the difference between 

the outcomes for the treated group, and what those outcomes would have been if they were not 

treated. 

• Sample ATT (SATT), which measures ATT among only those actually in the treatment group during 

the experiment.  

• Feasible Sample ATT (FSATT), which measures ATT among only those actually in the treatment 

group during the experiment who have good matches in the comparison group. 

Established matching methods require evaluators to iterate through: evaluation of the equivalence 

of the comparison group to the treatment group (balance), followed by the application of a matching 

method designed to adjust sample size based on a set measure of balance, or a method designed to improve 

balance based on a chosen sample size. This operation is difficult enough that it is nearly impossible to 

simultaneously optimize the balance and sample-size. There have been recent improvements to this 

process, namely a method for finding the balance/sample-size frontier without iteration, recently proposed 

by King, Lucas, and Nielsen (2015). 

Discussion 

EE and DR impact evaluations often use matching when the design is quasi-experimental. It can 

also be useful to perform matching as a part of the modeling done for experimental designs. Consider that 

a standard EE impact evaluation for a behavioral home energy report program with an RCT design uses a 

fixed-effect or lagged dependent variable model to help correct for household-specific differences in 

energy usage and weather response when calculating impacts. The RCT experimental design only requires 

that we use the difference in mean usage between the treatment and control groups to estimate impacts, 

but we use the model to improve the impact estimates and shrink the standard error of the estimates. We 

suggest using matching in addition to the model, because matching can reduce bias introduced by outliers 
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of poor balance between the treatment and control group. Thus, we propose matching as preprocessing to 

reduce bias and model dependence in impact estimates. 

Matching can improve balance in pre-treatment covariates through selective removal of 

observations (King et al. 2011). The purpose is to reduce model-dependence and bias in estimates of 

treatment effects. We want to reduce model dependence because some methods, such as linear regression, 

can increase bias when the true relationship is non-linear and there are differences in covariate means and 

variance between the control and treatment groups (Stuart 2010). 

We cannot directly control the bias-variance trade-off while matching. According to best practice, 

we do not include the outcome variable during matching, to insure that we do not cause selection bias. We 

can optimize on balance-sample size, which is an analogue to bias-variance. Balance is similar to bias 

because balance, along with variable importance, determine bias (King, Lucas, and Nielsen 2015). Sample 

size is one of the determinants of variance, so controlling the balance and sample size indirectly controls 

the bias-variance. 

With most matching methods, we choose the sample size in advance (e.g. for 1:1 nearest neighbor 

matching, the comparison group is a priori set to the treatment group size) and we iteratively try to 

improve balance, sometimes adjusting sample size along the way. Coarsened exact matching improves on 

this by setting an upper limit to imbalance and selects the best treatment and control group size to achieve 

that balance. Even better, the matching frontier method selects the best of all possible combinations of 

treatment and comparison group for every possible sample size, allowing us to select the best possible 

balance and sample size given the data we have. 

As evaluators, we often think of matching as just a way to help alleviate opt-in bias, but in both 

randomized controlled trials (RCT) and observational quasi-experiments, matching can decrease model 

dependence and variation when the treatment group is not well balanced to the control group. Inclusion 

of treatment units that do not have reasonable matches among the available control units yields 

(unacceptably) high model dependence (Iacus, King, and Porro 2011a). Think of matching as non-

parametric preprocessing for causal inference that can be used to identify subsets of the data where impact 

estimates can be made with reduced model dependence (King, Lucas, and Nielsen 2015). Then report 

impact estimates (SATT) for the N treated units as a weighted combination of two groups, one where there 

is a well-matched1 comparison group (estimate feasible sample average treatment effect on the treated 

(FSATT)) with Nf treatment units and another having poor matches (estimate non-feasible sample average 

treatment effect on the treated (NFSATT)) with Nnf treatment units. Reporting impact estimates in this 

way helps to explicate the amount of model dependence in the analysis. 

SATT =
FSATT ⋅ Nf + NFSATT ⋅ Nnf

N
 

Whether the energy efficiency or demand response program is a randomized experiment or an 

observational quasi-experiment, information about the level of model dependence is valuable when 

assessing the internal validity of impact estimates. 

Steps in matching, from Stuart (2010): 

1. Select a distance measure to determine "closeness", whether one unit is a good match for another. 

2. Select and implement a matching method, using your definition of "closeness". 

3. Assess the balance of the resulting treatment and comparison group. If necessary, return to 1 or 2 and 

iterate until treatment and comparison groups are well-matched with the largest possible sample size. 

4. Use matched data to perform analysis and estimation of the treatment effect. 

Important considerations: 

• Choice of treatment effect ITT, ATE, ATT, SATT, FSATT 

                                                 
1 We discuss one way to categorize the treatment group into feasible and non-feasible in the Measuring Balance section below. 
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• Choice of variables to match on -- critical for ignorability 

• Choice of distance metric 

• Choice of matching method 

• Balance checking 

Distance Metrics 

Exact 

Exact matching guarantees that the treatment group is perfectly matched to the comparison group 

on pre-treatment covariates, creating a dataset with perfect balance. To perform exact matching, first 

discretize all continuous covariates, then match a treatment unit to a comparison unit only if the levels of 

all covariates are exactly the same. 

The distance metric for exact matching is: 

𝐷(𝑋𝑖, 𝑋𝑗) = {
0 𝑖𝑓 𝑋𝑖 = 𝑋𝑗

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Propensity Score 

The propensity score distance metric uses a model (usually logistic regression, but alternatively 

boosted CART, random forests, or generalized boosted models) to calculate a score for how likely each 

unit is to be in the treatment group. Propensity score matching is widely used in the social sciences and 

sometimes appears in EE or DR impact analysis. 

A recent paper (King and Nielsen 2015) strongly argues against using propensity score distance 

for matching. Their primary argument is that propensity score distance matching substantially 

underperforms other matching methods, often actually increasing imbalance and model dependence. 

The scores are used to calculate distance between pairs of units. There is a wide variety of ways to 

calculate this distance (Ho et al. 2011), but the simplest distance metric is: 

D(Xi, Xj) = |ei − ej| 

Mahalanobis Distance 

The Mahalanobis distance metric directly calculates a weighted distance between a pair of points 

in p-dimensional space, where p is the number of covariates used for matching, and the distance is 

weighted by the inverse of the covariance matrix. Mahalanobis distance suffers from the curse of 

dimensionality, so adding more covariates can be counterproductive. Stuart (2010) suggests that 

performance drops off with more than 8 covariates, and when the covariates are not normally distributed. 

Matching on the sum of squared differences (Euclidian distance) is a special case of Mahalanobis 

distance matching with S = I. Where I is the identity matrix. Glinsmann and Provencher (2013) use 

Euclidian distance matching with replacement on 12 months of pre-treatment usage in their matching 

example. Euclidian distance is appropriate when all covariates are on the same scale and have similar 

range and variance. If one of the covariates has a substantially larger range than the others, the matching 

will only increase balance in that one dimension. 

The Mahalanobis distance metric is: 

D(Xi, Xj) = √(Xi − Xj)S−1(Xi − Xj) 
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Matching Methods 
We highlight a few of the many available matching methods, describing only those we have seen 

used in evaluation or that we think are especially interesting. For a more complete overview of matching 

methods, see Stuart (2010). 

Exact 

Exact matching is the ideal, ensuring that there is no model dependence in the matched units for 

the covariates included in matching. Unfortunately, exact matching is rarely possible in practice when 

there are more than a few covariates with few discrete levels, as the probability of finding an exact match 

quickly decreases as we add more covariates and more levels per covariate. In the rare situation where 

there are only a few covariates, exact matching may be a good approach. Exact matching is the simplest 

type of matching, but not applicable for most EE or DR impact analysis since we match on many 

continuous covariates. 

K Nearest Neighbors 

K nearest neighbors selects the k closest (defined by the choice of distance metric) comparison 

units to each treatment unit. This method is straightforward and easy to implement. The comparison group 

matches for each treated unit are selected in a "greedy" algorithm that moves through the treated group in 

order and selects the nearest comparison group unit. It is also possible to use an "optimal" algorithm that 

minimizes a global distance measure such as the average Mahalanobis imbalance or the standardized 

difference in means. A serious problem with k nearest neighbors, whether using a "greedy" or "optimal" 

algorithm, is the possibility of very poor matches remaining in the dataset, since the number of treatment 

and control units is fixed in advance of the matching. 

Coarsened Exact 

In contrast to k nearest neighbors, Coarsened exact matching fixes an upper limit to balance in 

advance, and adjusts the size of the comparison (and optionally the treatment) group (Iacus, King, and 

Porro 2011a). Coarsening combines levels of factor covariates and discretizes continuous covariates, and 

then applies exact matching. The units are then matched when one or more treatment units and one or 

more comparison units match exactly. Treatment units without matching comparison units are put into the 

non-overlap set. 

Matching Frontier 

A new option is the matching frontier method from King, Lucas, and Nielsen (2015), which 

calculates the balance and sample size for all possible combinations of treatment and comparison units, 

and returns the set of units with the best possible balance for every possible sample size. The set of 

assumptions and constraints are fairly reasonable. The authors of King, Lucas, and Nielsen (2015) have 

made an R (R Core Team 2015) software package available (King, Lucas, and Nielsen 2014) that 

calculates the frontier. The software is still nascent, and when it is more mature, it will be interesting to 

explore the usefulness of this matching method. 

Measuring Balance 
Measuring balance and assessing treatment-comparison overlap are key, often overlooked steps in 

the matching process. It is often useful to use two or even all three of the following balance measures to 

assess the matching, especially when trying more than one matching method. In the example below, we 

also describe the use of space diagrams to visually assess the comparative effectiveness of different 

matching methods. 
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Difference in Means 

The most common way to measure covariate balance while matching is to look at the difference 

in means between the treatment and comparison group for each of the covariates. Stuart (2010) 

recommends calculating the "standardized difference in means" for each covariate two-way interactions 

and squares. The standardized difference in means is the difference in means between the treatment and 

comparison groups, divided by the standard deviation of the covariate in the full treatment group: 
Xt−Xc

σt
. 

Average Mahalanobis Imbalance 

For continuous distance metrics, we can use the Average Mahalanobis Imbalance (AMI) metric 

(King et al. 2011), which is just the mean Mahalanobis distance between all matched pairs: 

D = meani[D(Xi, Xj(i))] 

We can identify the overlap and non-overlap sets using AMI by defining the non-overlap set as 

the set of treatment units that are not chosen as a match by any control unit (King, Lucas, and Nielsen 

2015). Then run the model analysis separately on the overlap (yielding FSATT) and non-overlap sets 

(yielding NFSATT) and combine the results according to the definition of SATT from above. 

Median 𝐋𝟏 Distance 

For discrete distance metrics, median L1 distance is the distance between the multivariate 

histograms of the treatment and comparison groups. Iacus, King, and Porro (2011b) interpret L1: "If the 

two empirical distributions are completely separated, then L1 = 1; if the distributions exactly coincide, 

then L1 = 0. In all other cases, L1 ∈ (0,1). If say L1 = 0.6, then 40% of the area under the two histograms 

overlap." The median L1 distance is: 

L1(H) =
1

2
∑(l1 ⋯ lk) ∈ H| fl1⋯lk

− gl1⋯lk
| 

The non-overlap set is then all treated units in bins with no comparison units. Estimation of the 

SATT can then proceed as described in the AMI section above. 

Example 
We use a simplified dataset from a behavioral home energy report program where the program 

was designed as a randomized experiment. We filtered the data to include only 12 months of pre-period 

data before the start of the program and 12 months of post-period data for the second year of the program 

for 10,000 treated households and 10,000 control households. This allows us to simplify estimation of the 

savings impact of the reports, since we don't have to account for the roll out period. For estimates of 

program savings, we use a simple model of average daily consumption (ADC) that includes a household 

specific intercept and adjustments for heating and cooling degree days: 

adct = β0 + βi + βtreat ⋅ treat ∙ post + βHDD ⋅ HDD + βCDD ⋅ CDD + εt 

Without Matching 

We start with a dataset with an equal number of comparison and treatment group households. 

Checking balance, we find a median L1 distance of 0.56 and average mean difference of 0.03 kWh/day. 

For month to month comparison, we plot the monthly mean for the comparison group and the treatment 

group for the 12 months in the pre-treatment period. 
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The comparison and treatment groups appear well balanced. It seems that the randomization to 

comparison and treatment group was quite effective. We will still investigate the effectiveness of matching 

to see what we can learn. Our first estimate of savings attributable to the program using the full dataset is 

4.9%. 

K Nearest Neighbors 

We use 1:1 matching with two different distance measures to look at how these two distance 

measures affect the balance, sample size and savings estimates. We match with replacement, which allows 

us to drop comparison group households that do not have a good match in the treatment group while 

retaining all treatment group households. The savings estimates are SATT estimates. 

First, with a propensity score distance metric, we match the 10,000 treatment group households 

with 5,580 comparison households. The median L1 distance is now 0.90, and the average mean difference 

is -0.22, so according to these metrics, the balance is actually worse than in the original dataset. The 

savings estimate for this propensity score matched dataset is 4.8%, so the estimate moved very little. 

Second, using the Mahalanobis distance metric, we match the 10,000 treatment group households 

with 5,762 comparison households. The median L1 distance is now 0.66, and the average mean difference 

is now 2.9! What happened here to make the balance so much worse? We are using Mahalanobis distance 

matching on 12 covariates (monthly usage for 12 months prior to the program start), more than the 

recommended maximum of 8 from Stuart (2010), so this matching is suffering from the curse of 

dimensionality, which makes the balance almost 100 times worse when measured as average difference 

of covariate means. The savings estimate is now 5.0%. 

It is important to realize that k-nearest neighbors matching is not guaranteed to improve balance, 

so it is extremely important to check balance before and after matching to see if the balance has improved. 

If it has not, it is better to either try a different matching method, such as coarsened exact that is more 

likely to improve the balance, or use the full, unmatched dataset if it is sufficiently balanced. 

Coarsened Exact Matching 

Coarsened exact matching allows us to gain some more insight into which treatment households 

are well matched, and which are not. Here, we will measure the FSATT and the NFSATT, combining 

them into a SATT. For the feasible sample, coarsened exact matching yields 9,408 treated households and 

9,355 comparison households. The median L1 distance for this group is 0.09 and the average mean 

difference is 0.37. The estimated FSATT savings of 4.3% is lower than the original SATT of 4.8%. 
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Combining the FSATT with the NFSATT, which is 9.6%, yields a SATT of 4.6% which is just lower than 

the SATT estimate from the full dataset. 

The insight that we get from using CEM is that the 592 unmatched treatment households appear 

to have substantially more savings than the rest of the treated households, but this increased savings is 

highly model dependent because these treatment households do not match well with the comparison group, 

so we rely on the model to reduce bias. The 9,408 matched treatment households in the FSATT estimate 

have less model dependence, so we model them separately from the unmatched treatment households. For 

this reason, we would prefer to report the 4.6% SATT savings from the weighted combination of FSATT 

and NFSATT as a better representation of the overall program savings, rather than the 4.8% from the full 

dataset. 

Conclusion 
Matching, when performed carefully, substantially improves our understanding of our treatment 

effect estimates (impact estimates), and can substantially reduce bias in those estimates. However, when 

it is performed without balance checks and careful consideration of matching method and distance metric, 

it can increase bias and variation in causal estimates.  

This example only covers one possible case, where the treatment and comparison groups are well 

balanced as part of an RCT. Matching can actually be more valuable in other situations, for randomization 

failure when the comparison and treatment groups are not balanced, or for quasi-experimental designs 

where the comparison group must be selected from a larger pool of non-treated units. In these more 

extreme cases, the matching method and balance checks are even more important because the bias of the 

impact estimates is primarily due to the selected comparison group. 
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