Behavioral Reminders Affect Customers' Energy Usage: Early Findings

Working Paper, IEPEC, 2019

Galib Rustamov, PhD Prapti Gautam, PhD Southern California Edison

Background

• Time-of-Use (TOU) rates

 Feedback on bills / energy consumption can help customers lower their electricity consumption and lower their bills

Evidence from CPP rates encouraging

Experimental Design

- Customers who opted in to be in TOU rate were offered text alerts.
 - Peak hours: 2pm-8pm.
 - Randomly assigned to either receive text at 2pm OR at 8 pm
- Rolling enrollment : April '16- Aug '17.
 - Alerts for 2 months
- N= ~ 3300 residential customers
- Testing: Reminders before peak-hours vs. reminders after peak-hours

2pm

Mon-Thurs

SCE TOU Update: Your On-peak time period has begun. Avoid using larger appliances until the off peak period begins at 8pm to take advantage of lower pricing.

8pm

Mon-Thurs

SCE TOU Update: It's now the off-peak time period. Take advantage of lower pricing and use larger appliances now until 2 pm tomorrow!

Methodology: Difference-in-Differences

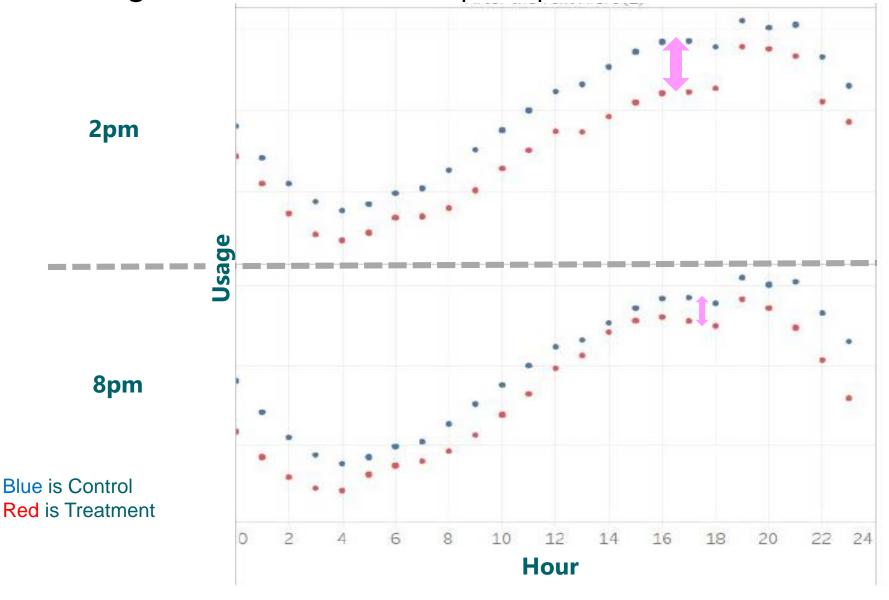
$$DiD_{Estimate} = (T_{post} - T_{pre}) - (C_{post} - C_{pre})$$

$$Y_{it} = \alpha + \beta T S_i + \gamma T P_t + \delta (T S_i * T P_t) + X_{it} + \epsilon_{it}$$

Y: Hourly electricity consumption, kWh.

TS: Treatment Status.

TP: Treatment Period.


 δ : coefficient for Diff-in-Diff.

Our estimates rely on the Diff-in-Diff Fixed effect model

Treatment Group: Opted-in to receive the text messages.

Control Group: Did not opt in

Alerting customers before the peak period is more effective

Results: 2 pm group: Savings were persistent for peak periods, and increased over time

	(1)	(2)	(3)	(4)		
VARIABLES	Pooled DiD	DiD FE	FE: Peak-Long	FE: Peak-Short		
Dif-in-dif, δ	-0.121*** (0.00320)	0.0875*** (0.0221)	-0.152*** (0.0358)	-0.105*** (0.0288)		
Constant	3.135***	2.727***	3.182***	3.066***		
	(0.00564)	(0.0575)	(0.0802)	(0.0732)		
Observations	37,729,668	37,729,668	11,010,774	9,439,904		
R-squared	0.046	0.068	0.107	0.088		
Number of SA		3,130	3,130	3,130		
Robust standard errors in parentheses						

*** p<0.01, ** p<0.05, * p<0.1

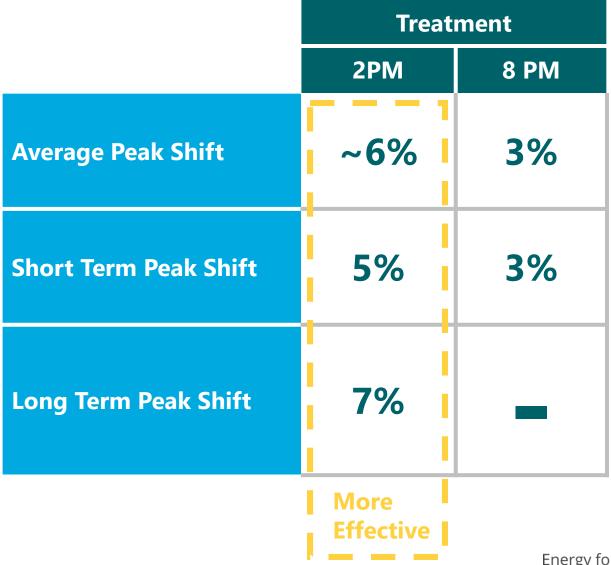
Achieved overall peak shift by 5 - 7%

Results: 8 pm group: Savings were short-term only with no persistence for 6 months

	(1)	(2)	(3)	(4)		
VARIABLES	Pooled DiD	DiD FE	FE: Peak-Long	FE: Peak-Short		
Dif-in-Dif, δ	-0.0767*** (0.00281)	-0.0569** (0.0222)	-0.0468 (0.0357)	-0.0542** (0.0273)		
Constant	3.108***	2.697***	3.156***	3.025***		
	(0.00551)	(0.0558)	(0.0784)	(0.0706)		
Observations R-squared Number of SA	38,785,256 0.047	38,785,256 0.070	11,318,391 0.108 3,216	9,704,509 0.088		
Number of SA	D-14 -4-	3,216	4	3,216		
Robust standard errors in parentheses $**** p<0.01, *** p<0.05, ** p<0.1$						

Achieved overall peak shift by ~3%

Limitations


- Frequency of texts
 - Different household routines
 - Did not optimize text timings to time of day and week.
- Did not examine if customers actually read their texts
 - We did not employ read-receipts
- In future, we could consider providing bill incentives to increase participation
 - ~20% opt-in rate. Could increase customer satisfaction.

Discussion & Implication

- Timing of text reminders are important both short and long-term
 - Reminders before peak vs. after peak
 - Before peak showed persistence and gradual increase in peak reduction over time
- Salient reminders could be more effective than generic reminders
 - Past research personalized reminders, tangible followthrough actions

Questions?

Summary of Results

