

Drawing lessons from Federal efforts to drive innovation

Alison LaBonte

My introduction to prizes

- What makes it expensive/difficult to extract wave energy?
 - Expensive to test & demonstrate technologies
 - Ocean environment is harsh
- Barriers for entry to wave energy:
 - High cost of tank and ocean testing
 - Wide variety of technical skills and deployment experience needed
 - Expensive and time consuming permitting & licensing processes
 - Limited investor knowledge about wave energy

Four technology gates

Three Phases

The Case in Energy Efficiency

- Aggressive savings goals, harder to achieve cost effectively
- More frequent and severe heat waves. Cooling technologies are adding to global warming
- Heat pump tech exists, but in less than 10% of California homes
- Customer's fear and doubt

Concerns

- Will the prize result in a winner?
- When should I use a prize vs. traditional award?
- What is a prize's relative cost and return on investment?

Source: Eckert, Jan B. The Super Efficient Refrigerator Program: Case Study of a Golden Carrot Program, 1995

Risk Mitigation

- Suitability of the Problem for a Prize
- Communications, outreach, engagement plan
- Resource planning

Key elements in prize design

- Goal
- Structure (reward, timeline, participant pool)
- Metrics and Evaluation
- Incentive

Lessons from Prize Examples

- Ideas, software, and apps (DOE's Sunshot Catalyst prize)
- Technology development (Global Cooling Prize; US EPA Super-Efficient Refrigerator Program)
- Market adoption (Georgetown University Energy Prize)

Global cooling prize

Source: Campbell, Kalanki, and Sachar 2018.

Georgetown University Energy Prize

Source: Georgetown University, Advancing Energy Efficiency in Small Cities, 2018.

Next Steps

- Have we identified the barrier/problem?
- Any legal statutes?
- Organizational buy in?
- Tap into extensive prize resources and expertise

LOOKING FOR MORE INFORMATION? See GAO-17-14 at GAO.GOV

Thank you

- Jorge Morales Guerrero and Darshan Karwat (Arizona State University)
- Chad Gallinat (Conservation X Labs)
- Ammar Qusaibaty, Karma Sawyer, Brian Walker, Harry Bergmann, Erika Gupta, Stephanie Johnson (U.S. Department of Energy)
- Josh Courtney (City of Takoma Park),
- Jenn Gustetic (NASA), Jarah Meador (General Services Administration), Lorin Kavanaugh-Ulku (USAID)
- Fellow panelists

Alison LaBonte Alison.LaBonte@cpuc.ca.gov