Big Data and Demand Response:

How Big Data Analysis
Techniques Can
Provide M&V Results
in Near Real-Time

Noah Fraser -- ADM Associates Inc.

2019 IEPEC Conference – Denver, CO

ENERGY RESEARCH AND EVALUATION

BIG DATA — Blessing or a Curse?

Imagine a DR Program with...

60,000 DR Participants +

50,000 Control Homes +

15-Minute Meter Data =

~60 million data points

If rows of meter data were dollar bills, we could cover Mile-High field 120 times with the data required to analyze a single DR event.

Presentation is a "How-To"

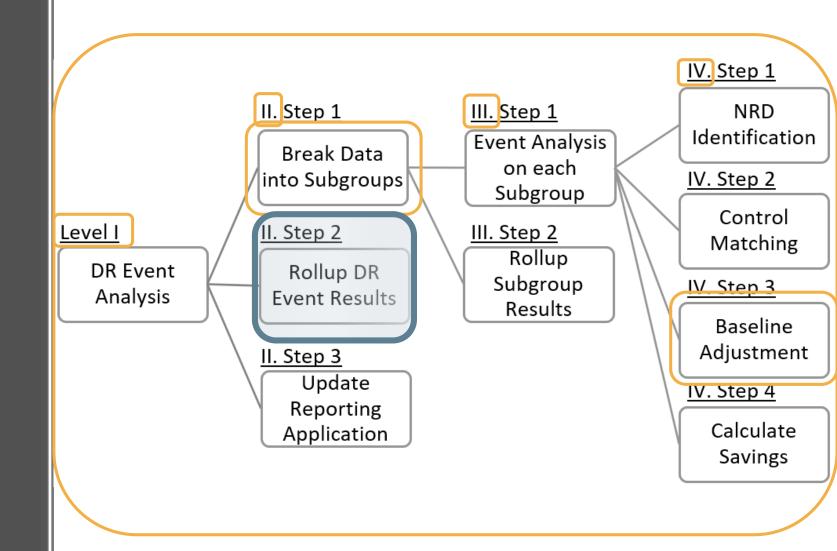
Brief introduction to the Big Data analysis concepts used to evaluate a large Demand Response program in Near-Real-Time.

Rapid M&V feedback is a hallmark of the M&V 2.0 paradigm.

Functional Programming

Matrix Based Operations

"Near-Real-Time" M&V Results



Functionally Programming a DR Analysis

Functions

Reactive Programming

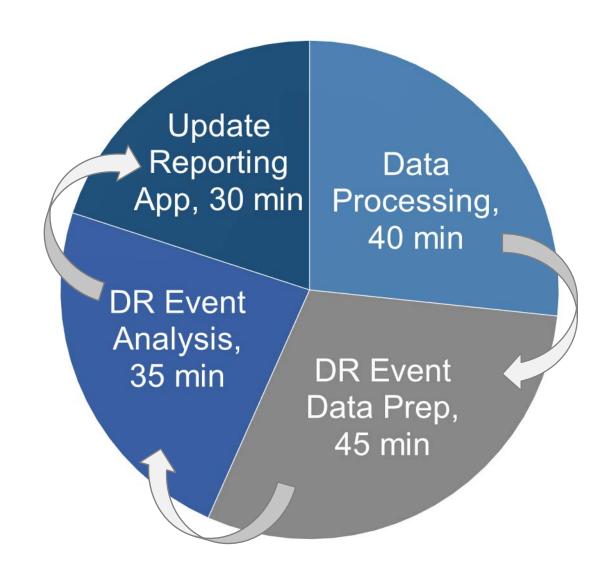
Hierarchal Analysis

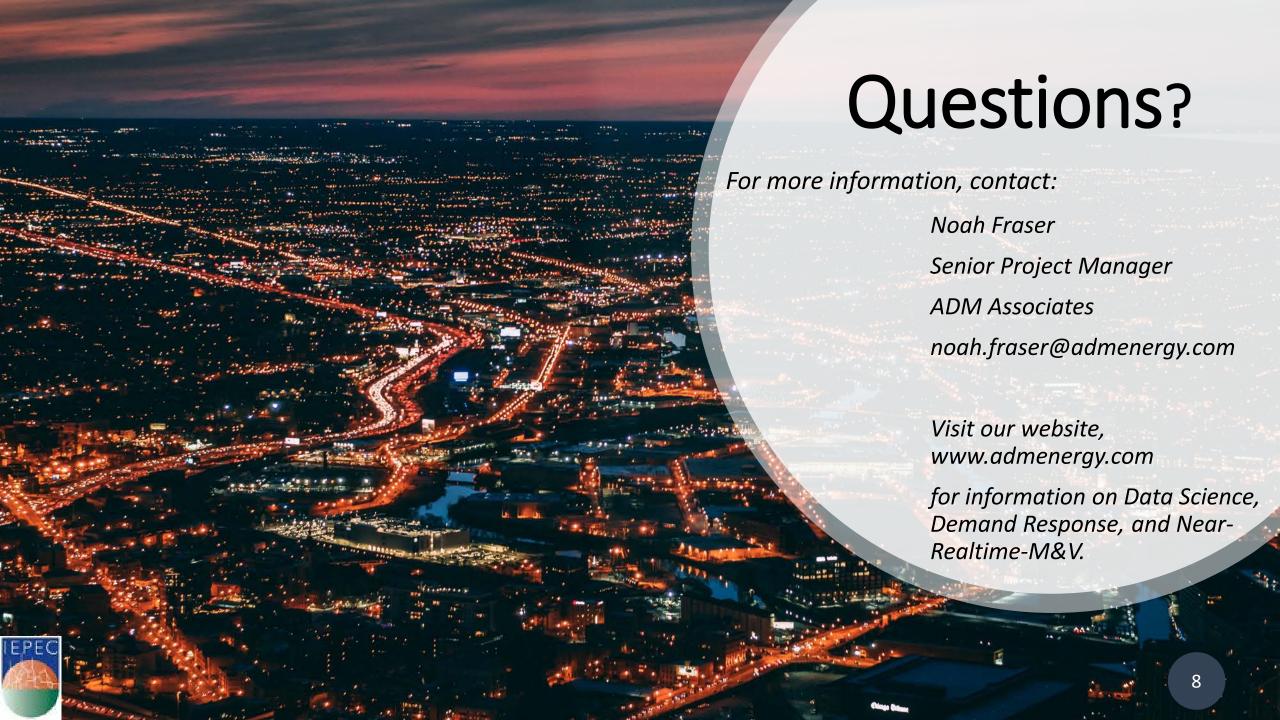
Matrix Based Analysis of DR Data

Data Tables

Referencing

Vectorization


Categorical Variables			Data Sets			
Device	Rate	DR Event	Date	DR	Control	Event
Type	Code	Phase	Time	kWh	kWh	kW
D	Single Family	Phase 1	7/5/2019 15:00 7/5/2019 16:00 7/5/2019 17:00	4.5 1.8 2.1	4.5 4.8 5.1	
e v i		Phase 2	7/5/2019 18:00 7/5/2019 15:15 7/5/2019 16:15 7/5/2019 17:15 7/5/2019 18:15	5.1 5.1 1.9 2.2 5.2	4.7 5.1 5.2 5.1 4.9	
c e	Multi Family	Phase 2	7/5/2019 15:15 7/5/2019 16:15 7/5/2019 17:15 7/5/2019 18:15	2.9 0.9 1.1 3.1	2.9 3.1 3.1 2.8	
Α		Phase 3	7/5/2019 15:30 7/5/2019 16:30 7/5/2019 17:30 7/5/2019 18:30	3.2 1.1 1.4 3.1	3.2 3.3 3.2 2.7	
D e	Single Family	Phase 4	7/5/2019 15:45 7/5/2019 16:45 7/5/2019 17:45 7/5/2019 18:45	4.6 1.9 2.2 5.2	4.6 4.9 5.1 4.8	
v i		Phase 5	7/5/2019 16:00 7/5/2019 17:00 7/5/2019 18:00 7/5/2019 19:00	4.4 1.7 1.9 4.9	4.4 4.5 4.8 4.6	
c e	Multi Family	Phase 3	7/5/2019 15:30 7/5/2019 16:30 7/5/2019 17:30 7/5/2019 18:30	3.1 0.7 1.1 2.9	3.1 3.2 3.1 2.8	
В		Phase 4	7/5/2019 15:45 7/5/2019 16:45 7/5/2019 17:45 7/5/2019 18:45	2.7 0.6 0.9 2.8	2.7 2.9 3.1 2.8	


"Near-Real-Time" M&V is Possible

Once data is received, M&V results can be provided in 2hr 30min.

Dependent on the efficiency of the data pipeline between the Utility, Implementer, and Evaluator.

