

EVALUATING C&I DR EVALUATION Vijay Gopalakrishnan (ERS)

IEPEC, August 21, 2019 Denver, CO

DNV.GL

SPECIAL THANKS TO CO-AUTHORS AND CONTRIBUTORS:

Tracy Dyke-Redmond, Eversource Alexandra Bothner, Eversource Ralph Prahl, Ralph Prahl and Associates Jon Maxwell, ERS **Allison Donnelly, Formerly of ERS** Ken Agnew, DNV GL Tom Ledyard, DNV GL Jason Symonds, Formerly of DNV GL

SUMMARY OF STUDY

SUMMARY OF SCOPE

Metric	Vendor 1	Vendor 2	Vendor 3	Vendor 4	Vendor 5	Vendor 6
Technology	Manual curtailment	BMS controls	Thermal storage	Thermal storage	Battery	Battery
Targeted customer type	Large	Large	Cold storage	W/packaged HVAC units	Large	Medium and large
Target count for year 1	17	18	2	9	3	1
Achieved count for year 1	18	0	1	1	1	1

Research Objectives

- Successful customers
- Value streams
- Degree of automation
- Barriers

МРАСТ	PROCESS
Magnitude of reductions	Customer recruitment
Net-energy impacts	Motivations
Complementarity with other strategies	Satisfaction
M&V strategy	Non-energy benefits
Cost-effectiveness	PA satisfaction

DISPATCH STRATEGIES

		Vendor					
Season	Strategy	Manual Curtailment	BMS/Controls	Thermal Storage 1	Thermal Storage 2	Battery 1	Battery 2
Summer	Daily			Х	Х	Х	
	Utility-triggered event	Х					Х
	Vendor-forecasted ICAP	Х	Х				Х
	Facility peak		Х				Х
Winter	Utility-triggered event	Х				Х	Х
	Facility peak						Х

SELECTION OF IMPACT EVALUATION METHOD

SUMMARY OF EVALUATION METHODS

Vendor	Technology	Evaluation Method		
Manual Curtailment	Curtailment	Utility interval data analysis		
BMS/Controls	Software	Utility interval data analysis		
Thermal Storage 1	Refrig. thermal storage	Refrig. equipment measurement		
Thermal Storage 2	HVAC thermal storage	HVAC equipment measurement		
Battery 1	Battery	Batterymeasurement		
Battery 2	Battery	Batterymeasurement		

PROCESS METHOD (ALL)

Utility staff and vendor interviews, participant surveys

Settlement baseline

- ISO NE methodology, used to verify compliance with program requirements
- 10 non-event, non-holiday weekdays leading up to event day
- Adjusted for same-day load prior to the event

Regression baseline

- Uses data from the entire season
- Regression with weather and other applicable variables to calculate baseline event-day load

SETTLEMENT AND REGRESSION BASELINES FOR MANUAL CURTAILMENT

BATTERY PERFORMANCE DAILY AND TARGETED

DAILY

TARGETED

REFRIGERATION THERMAL STORAGE PERFORMANCE

FINDINGS

The batteries and manual curtailment solutions reduced load as reported.

The thermal storage solutions' performance was as reported for one vendor and will need to be re-evaluated for the second vendor.

Settlement and regression baselines are both required to sufficiently characterize the impact of manual curtailment offerings.

FINDINGS (CONTINUED)

Recruiting approaches ranged from almost entirely vendor-driven to almost entirely utility account executive (AE)-driven.

Customer education is a critical step in the recruitment process.

Participating customers were highly satisfied.

EVALUATION-ORIENTED RECOMMENDATIONS

Employ two baselines to sufficiently evaluate manual curtailment offerings Directequipment measurement is appropriate for energy storage evaluations ž=

Standardize

reporting requirements for all participating vendors. Involve the M&V contractors during the DR tests to minimize customer burn-out.

CONTACT US

Vijay Gopalakrishnan

 \bowtie

vijayg@ers-inc.com

978-332-5029

www.ers-inc.com

ERS is an energy engineering firm providing services in energy efficiency customer engagement, implementation, evaluation, pre- and post-installation M&V, and distributed and renewable generation assessment.

