Smart Enough to Reprogram Itself:
Results from Thermostat Setpoint Optimization Programs

Jon Koliner, Apex Analytics
Jesse Smith, Demand Side Analytics
IEPEC 2019
Setpoint Optimization Programs

- Connected thermostats facilitate behavioral tune-ups!
- One program researched: Tendril’s Orchestrated Energy across 5 utility territories
Fixed effects model

$$RT_{h,p} = \alpha_p + \beta_{CDH} \cdot CDH_{h,p} + \beta_{ToD} \cdot ToD_h + \beta_{wknd} \cdot Weekend_h + \beta_{actv} \cdot Active_{h,p} + \beta_{actvCDH} \cdot Active_{h,p} \cdot CDH_{h,p}$$
Algorithm Alters Thermostat Schedule

- Average setpoint increased
- Average indoor temperature increased
Runtime Reduction across the Summer

2.47 kWh per home per active day
Runtime savings across all territories

Savings robust across territories

Runtime savings more consistent as minutes than as percentage

Single Day: Active Day vs. its Counterfactual

Unadjusted: Active Days compared to all usage

Adjusted: As above, Learning converted to Active Days
Savings vary by provider

Less Aggressive More Aggressive

nest
uplight
resideo
Eco Factor

32 kWh 111 kWh 207 kWh 475 kWh
4.6% 9.1% 15.0% 13.5%
≈ 1 TWh Achievable Potential across the United States

- **MARINE**: 40 kWh per HH per summer
- **COLD / VERY COLD**: 79 kWh per HH per summer
- **MIXED-HUMID**: 182 kWh per HH per summer
- **HOT-DRY / MIXED-DRY**: 195 kWh per HH per summer
- **HOT-HUMID**: 398 kWh per HH per summer

* Assuming 9% cooling energy savings per household, and consumption based on RECS 2015 by region
Questions?

Jon Koliner
jonk@apexanalyticsllc.com