veic

Opening the Black Box: Explainable AI for Greater Energy Saving

Biodun Iwayemi PhD., Jeffrey Hullstrung, Nick Neverisky, Dan Fredman PhD. IEPEC

About VEIC

- Nonprofit founded in 1986 with a mission to generate the energy solutions the world needs – focus is reducing GHGs and improving energy equity
- National consulting practice advising states, utilities, Federal agencies, nonprofit organizations, and private industry
- Program design & implementation for energy efficiency and clean energy programs serving customers, including program administrator for Efficiency Vermont & the DC Sustainable Energy Utility; on administration team for California TECH, Hawaii Energy, and Focus on Energy (Wisconsin)
- **Clean transportation** program design, evaluation, technical analysis/assistance, data collection/analysis, education, fleet studies, and implementation for LD/MD/HD Electric Vehicles

This week, Hewlett-Packard (where I am on the board) announced that it is exploring

Machine learning in everyday life

Voice assistants https://www.etsy.com/market/change_my diaper

Predictive text and email

Computer vision: Object detection and tracking https://pythonawesome.com/yolo-rcnn-object-detection-and-multi-object-tracking

Definitions

Artificial Intelligence: the ability of computers and robots to exhibit behavior that mimics human abilities like reasoning and problem-solving.

Machine learning: "[A] set of methods that computers use to make and improve predictions or behaviors based on data" – Christoph Molnar

Evolution of Machine Learning for Energy Modeling

Linear Regression (PRISM)

Model parameters: daily temperature, monthly billing date, heating degree days relative to building balance point

Time of week and temperature (TOWT)

Model parameters: hour-of-week, outdoor temperature, type of day (regular, holiday)

2018date

1986

2011

Gradient Boosting Machines / Deep Neural networks

Model parameters (time-of-day, day-of-week, month, outdoor air temperature, outdoor relative humidity, type of day)

Time of Week and Temperature (TOWT) model

Time of week and temperature (TOWT) modeling*:

- Published by LBNL team in 2011, refined and tested
- One of the CALTRACK evaluation methods
- Performs a continuous, piecewise temperature regression with 5 segments
- Introduced hour-of-week as a key variable

*Quantifying Changes in Building Electricity Use, with Application to Demand Response"; Johanna L. Mathieu, Phillip N. Price, Sila Kiliccote, Mary Ann Piette; Environmental Energy Technologies Division; April 2011; Submitted to IEEE Transactions on Smart Grid

Time of Week and Temperature (TOWT) model

Model inputs

- Hour of week (categorical, 168 possibilities)
- Day Type
 - Regular or Holiday (categorical, 2 possibilities)

Gradient Boosting Machines

Overview

- Ensemble models that combine many "weak"/mediocre models to create a powerful and accurate model
- Each weak model learns from it's predecessors mistakes
- Excellent performance on tabular data and able to capture non-linear relationships
- We used LightGBM*, Microsoft's implementation of GBM's

Gradient Boosting Machine

Model inputs:

- Temperature (outdoor dry bulb)
- Relative humidity (outdoor)

Image: efficiencyvermont.com

Modeling 8 Grocery Stores

- 8 grocery stores in Vermont
- Average size: 50,000 sq. ft
- Annual consumption: 14,000 MWh across all stores
- Previously analyzed for large multimeasure projects using our standard weather normalization process
- LBNL Time-of-week Temperature (TOWT) regression provided good to excellent results

Model development and evaluation

Data preparation

- 70% training data / 30% test data
- Used SKLearnstratified split to balance data from each season
- Used daily "chunks" of data to test model with unseen days
- **Evaluation metrics**
- R²
- CV-RMSE

Training and Test sets

Results: LightGBM vs TOWT

parameter	value	value	pct diff	J	parameter	value	value	pct diff
model_name	Grocery1_lgbm	Grocery1_towt		J	model_name	Grocery5_lgbm	Grocery5_towt	
cvrmse_train	2.9%	4.3%		J	cvrmse_train	3.0%	4.0%	
rsquared_train	94.7%	88.1%			rsquared_train	95.3%	91.8%	
cvrmse_test	3.8%	4.8%	21%		cvrmse_test	4.1%	4.2%	4%
rsquared_test	91.9%	87.0%	6%		rsquared_test	91.8%	91.1%	1%
parameter	value	value	pct diff]	parameter	value	value	pct diff
model_name	Grocery2_lgbm	Grocery2_towt			model_name	Grocery6_lgbm	Grocery6_towt	
cvrmse_train	3.6%	7.7%			cvrmse_train	3.2%	4.0%	
rsquared train	97.3%			I			95.2%	
cvrmse_test	5.3%	Overall results				4.7%	6%	
rsquared_test	94.7%					93.6%	1%	
parameter	value	Average reduc	ction in C	V-RI	VISE test	15.0%	value	pct diff
parameter model_name	value Grocery3_lgbm	Average reduc	ction in C	V-RI	VISE test	15.0%	value rocery7_towt	pct diff
parameter model_name cvrmse_train	value Grocery3_lgbm 3.7%	Average reduc Average increa	ction in C ase in R-s	V-RN qua	VISE test red test	15.0% 3.7%	value rocery7_towt 3.3%	pct diff
parameter model_name cvrmse_train rsquared_train	value Grocery3_lgbm 3.7% 92.4%	Average reduce Average increa	ction in C ase in R-s	V-RN qua	VISE test red test	15.0% 3.7%	value rocery7_towt 3.3% 92.9%	pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test	value Grocery3_lgbm 3.7% 92.4% 4.9%	Average reduce Average increa	ction in C ase in R-s	V-RN qua	VISE test red test	15.0% 3.7% ^{3.4%}	value rocery7_towt 3.3% 92.9% 3.6%	pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3%	Average reduce Average increa	ction in C ase in R-s	V-RN qua	VISE test red test cvrmse_test rsquared_test	15.0% 3.7% 3.4% 93.4%	value rocery7_towt 3.3% 92.9% 3.6% 92.3%	pct diff 7% 1%
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3%	Average reduce Average increa	ction in C ase in R-s	V-RI qua	VISE test red test cvrmse_test rsquared_test	15.0% 3.7% 3.4% 93.4%	value rocery7_towt 3.3% 92.9% 3.6% 92.3%	pct diff 7% 1%
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test parameter	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3% value	Average reduce Average increation 6.1% 82.0%	tion in C ase in R-s	V-RI qua	VSE test red test cvrmse_test rsquared_test parameter	15.0% 3.7% 3.4% 93.4% value	value rocery7_towt 3.3% 92.9% 3.6% 92.3% value	pct diff 7% 1% pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test parameter model_name	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3% value Grocery4_lgbm	Average reduct Average increation 6.1% 82.0%	19% 8% pct diff	V-RI qua	VSE test red test cvrmse_test rsquared_test parameter model_name	15.0% 3.7% 3.4% 93.4% value Grocery8_lgbm	value rocery7_towt 3.3% 92.9% 3.6% 92.3% 92.3% value Grocery8_towt	pct diff 7% 1% pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test parameter model_name cvrmse_train	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3% value Grocery4_lgbm 3.3%	Average reduct Average increation 6.1% 82.0%	tion in C ase in R-s	V-RI qua	VISE test red test cvrmse_test rsquared_test parameter model_name cvrmse_train	15.0% 3.7% 3.4% 93.4% value Grocery8_lgbm 2.6%	value rocery7_towt 3.3% 92.9% 3.6% 92.3% 92.3% value Grocery8_towt 3.7%	pct diff 7% 1% pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test parameter model_name cvrmse_train rsquared_train	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3% value Grocery4_lgbm 3.3% 96.3%	Average reduct Average increation 6.1% 82.0% value Grocery4_towt 4.6% 92.7%	tion in C ase in R-s	V-RI qua	VSE test red test cvrmse_test rsquared_test parameter model_name cvrmse_train rsquared_train	15.0% 3.7% 3.4% 93.4% value Grocery8_lgbm 2.6% 97.6%	value rocery7_towt 3.3% 92.9% 3.6% 92.3% value Grocery8_towt 3.7% 94.9%	pct diff 7% 1% pct diff
parameter model_name cvrmse_train rsquared_train cvrmse_test rsquared_test parameter model_name cvrmse_train rsquared_train cvrmse_test	value Grocery3_lgbm 3.7% 92.4% 4.9% 88.3% value Grocery4_lgbm 3.3% 96.3% 4.9%	Average reduct Average increation 6.1% 82.0% Value Grocery4_towt 4.6% 92.7% 5.6%	19% 8% pct diff	V-RI qua	VSE test red test cvrmse_test rsquared_test parameter model_name cvrmse_train rsquared_train cvrmse_test	15.0% 3.7% 3.4% 93.4% value Grocery8_lgbm 2.6% 97.6% 3.5%	value rocery7_towt 3.3% 92.9% 3.6% 92.3% value Grocery8_towt 3.7% 94.9% 4.0%	pct diff 7% 1% pct diff 12%

Store by store comparison (locations 1 – 4)

Store by store comparison (locations 5 – 8)

Model diagnostic charts: Grocery store #1 prediction

Prediction Error for LGBMRegressor

Model diagnostic charts: Grocery store #1 prediction

distribution

TOWT Residuals and distribution

Great, we know we have good models, but.....

- What are the drivers of energy usage in these facilities?
- Does the model make sense?
- How do we explain the model results to our customers?

The case against advanced regression models

www.efficiencyvermont.com 888-921-5990 | 802-860-4095

Performance Period Update Report

model: Power (kW) = 166 - 0.04*kWh_gen
2010 00 01
2019-09-01
2020-07-01
305
108
(kWh) 862,155
(h) 789,893
72,262
+/-14,334
8.4%
+/-1.7%
0%) 19.8%

More flexible (accurate models) are usually less interpretable

Advanced ML

Models like GBM's don't

provide a

regression equation

EVT Customer Report

Black box models

Not ideal for:

- Highly regulated environments where transparency is critical
- When you want to understand why

Explainable AI (XAI) for explaining machine model outputs

eXplainable AI (XAI)

https://www.darpa.mil/program/explainable-artificial-intelligence

Explaining Machine Learning Models using SHAP

- <u>SHapley Additive exPlanation (SHAP)</u> provides a way to fairly attribute contributions from multiple participants
- Based on Nobel prize winning work in cooperative game theory by Lloyd Shapely
- Post-hoc explanation that can be applied to a variety of machine learning models

Explaining Machine Learning Models using SHAP

Why was your loan application approved/denied?

Attributing impacts to model inputs

https://iancovert.com/blog/understanding-shap-sage/

Local models

• Provide model explanations for a snapshot in time

Global models

- Provide model explanations over multiple readings over an extended period of time
 - (e.g. a quarter, year etc.)

Local model explanation

Global model explanations

• Aggregation over time (e.g. a quarter, year etc.)

Global model explanations

Mapping from local to global explanations

User testing XAI Visualizations

User testing goal

High-level goal

 Identify methods for <u>communicating outputs</u> of machine learning algorithms that model power use to audiences <u>with a range of experience</u> with energy management and modeling

Sub-goals

- Identify chart types that effectively communicate drivers of power use
- Identify chart elements that aid in communication
- Identify chart elements that cause confusion

User Testing Participants

Count of Participants by department

Count of Participants by department

Force plot (Local model)

- SHAP force plot showing correlations learned from a snapshot of specific model.
- Participants found the force plot the hardest chart to interpret.

	All participants	Session #1	Session #2	
Feature most increasing power use	78%	80%	77%	
Feature most decreasing power use	63%	56%	69%	
Feature with largest effect on power use	92%	100%	85%	
Power use	75%	55%	92%	
Average	77%	73%	81%	
% indicating difficulty	66%	90%	46%	
Values other than "% indicating difficulty" are the percent of respondents who				

answered correctly

Bar chart (Local model)

- Shows correlations learned from a snapshot of specific model inputs
- Users found the bi-directional bar charts the most intuitive of all the chart types

	All participant s	Session #1	Session #2
Feature most increasing power use	87%	82%	92%
Feature most decreasing power use	92%	82%	100%
Feature with largest effect	96%	91%	100%
Average	92%	85%	97%
% indicating difficulty	5%	10%	0%
effect Average % indicating difficulty Values other than "% indicating difficulty	92% 5%	85% 10%	97% 0%

Bar chart (Global model)

Shows correlations learned over several months of data:

- Users found this chart easy to interpret
- It also had the highest rate of accurate interpretations across all the charts:

	All participants	Session #1	Session #2	
Feature with largest effect on power use	96%	91%	100%	
Feature with smallest effect on power use	100%	100%	100%	
Average	98%	96%	100%	
% indicating difficulty	5%	10%	0%	
Values other than "% indicating difficulty" are the percent of respondents who answered correctly				

Bee Swarm (Global model)

Most complex visualization, but captured participants' interest the most.

 Feedback was that this chart would provide the most information if users were guided on how to use/interpret it.

	All participants	Session #1	Session #2
Feature with largest			
potential to affect power	70%	45%	92%
use			
Feature with smallest			
potential to affect power	92%	91%	92%
use			
Identify features with			
potential to not affect			
power use			
Average	81%	68%	92%
% indicating difficulty	52%	50%	54%
Values other than "% indicating diffi answered correctly	culty" are the perc	ent of respon	dents who 35

Findings

- The charts most likely to resonate with focus group participants were simple bar charts and the global model bee-swarm chart.
- The highest rate of misinterpretation and reported difficulty were on the local model force plot.
- Participants report that charts like these are **useful representations of power data**

Recommendations/Learnings

- Visually easy-to-understand charts offer good representations of data about power use.
- Clarity of chart labels and design elements (e.g. helper text, color-blind-friendly color schemes) helped making charts easily understood and accessible to a broader audience
- Present power use in dollars terms (rather than energy use in kWh) to relate to operating costs and drive investments

XAI on Grocery store regression models

Image: efficiencyvermont.com

Model Interpretation

- Given an average power draw of 330 kW:
- 10am is correlated with a power <u>increase</u> of 28.82 kW above the 330 kW average
- A temperature of 33.1°F is correlated with a <u>reduction</u> in power draw of 14 kW
- A relative humidity reading of 56.7% is correlated with a power <u>reduction</u> of 4 kW

Local model for grocery store #1

Global Interpretation

- Low temperatures are correlated with <u>decreases</u> in power consumption
- Power draw <u>decreases</u> by 50 kW during the early hours of the day (midnight onwards)
- Higher humidity is correlated with power <u>increases</u> of 1-30 kW

Global model for Grocery store #2

Predicting is not explaining

- The SHAP plots show only the correlations learned by the model:
 Correlation is not causation.
- The learned models are valid only for relationships learned within the dataset the models have seen.
- These correlations could change as modifications are made to the building, or if building operation patterns change.
- Determining causal relationships between model inputs and the model output requires more rigor, and is best achieved through causal modeling, experiments and causal hypotheses. veic

Take-aways

- Determine if you have sufficient data. These methods require 15-minute or hourly interval data. The team also recommends at least one year of data for modeling, with data that capture all the seasons experienced at the building's location.
- **Benchmark your models.** Modelers should compare the performance of existing modeling strategies with GBRTs. The VEIC team advises switching to GBRTs only if the performance gain on the data is significant.
- **Customize your plots.** The team recommends using simple SHAP plot types, with added helper text and color-blind-friendly colors.
- Be clear about model limitations. These are predictive, not causal, models

