NMEC Program Design with Missing Data, Zero Values, and Differing Meter Resolutions

Summary and Findings

•Allow for building energy model flexibility

- Model structure (algorithm)
- Variable inputs
- Daily aggregation (interval data)
- Stretching baseline and/or performance period timelines
- •Industry accepted model metrics and final savings uncertainty calculations may not always align
- •Allow operational time to vet available non-weather model inputs
- •Set program participation data quality thresholds

Background

• Program: Central Water Heater Multifamily Building Solution Program

- Utility sponsor Southern California Gas (SCG)
- Initiated in 2016
- Enabling Regulatory framework
 - 2015 California Assembly Bill (AB) 802 enabled program
 - Program advanced as a High Utility Project or Program (HOPPs)
 - Advice letter 4965-A was approved by California Public Utilities Commission (CPUC) August 2016
- •Normalized Metered Energy Consumption (NMEC) program design
 - Novel data driven program design leveraging gas AMI
 - Similar in scope to other whole building program designs (SEM, P4P)
 - ... with weather normalization expectation affecting
 - Program launched prior to now robust published CA NMEC guidelines!
 - Program methodology approved via advice letter in lieu of deferring to published guidelines

Rulebook for Programs and Projects Based on Normalized Metered Energy Consumption

Site-Level NMEC Technical Guidance: Program M&V Plans Utilizing Normalized Metered Energy Consumption Savings Estimation

> Version 2.0 Date: December 15, 2019

Program Design

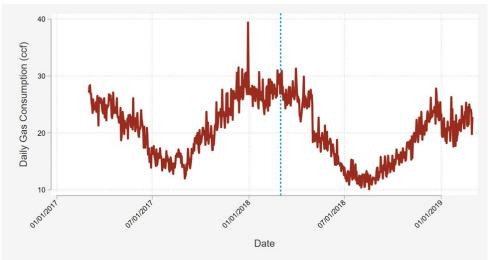
- Program eligibility
 - Natural gas heated multifamily buildings
 - Master metered with installed AMI (hourly interval)
 - Built prior to 1984
 - Greater Los Angeles SCG service area
 - Initial 20 program sites
- Program Measures
 - Central storage water heater or boilers
 - Central water heater modulating temperature controllers
 - Hot water system usage monitoring
 - Low flow showerheads and faucet aerators
 - Circulating demand pumps with controllers
- Data requirements
 - 12 months pre (baseline) and post (performance) project interval hourly gas readings
 - Final savings and incentives based solely on whole building prediction modeling

M&V Methodology

•Baseline/Performance Period Models

- Hourly precision
- TOW method characteristics 2011 LBNL Published DR model method
 - Each hour of the week (n=168) is a separate data feature (variable)
 - Temperature Seasonal/annual non-linear relationship between energy captured by linear spline features
 - 6 variables representing temperature buckets <20, 20-39, 40-59, 60-79, 80-100, 100+
 - Separate models for occupied/unoccupied time hours of the week*
- Other included model variables
 - Heating degree hour moving average
 - Holiday indicator
- Other variable research
 - Water and occupancy
- Ordinary least squares regression (OLS)

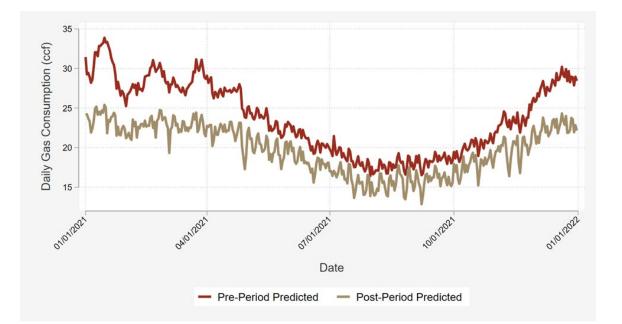
*Not incorporated in final M&V method, because of constant multifamily building occupancy **Current CA NMEC program guidelines call for CA specific normal climate datasets



M&V Methodology cont. . .

•NMEC – What is weather normalization?

- Requires baseline <u>and</u> performance period energy prediction models
- Final savings models projected using Typical Meteorological Year (TMY) datasets*
- Performance Period Normalized Savings = [baseline forecast] – [performance forecast]
- Removing short term weather effects from savings facilitates resource plan incorporation
- Other variables (if known) can be normalized



*CA currently supports state based normalized weather datasets

M&V Methodology cont. . .

Modeling Metrics (baseline and performance)

- Variability (accuracy) CV(RMSE)
 - Average model miss scaled by average hourly gas usage
 - Target threshold < 25%
- Bias Net Bias Error (NBE)
 - Is the model more likely to miss high or low?
 - Target threshold between -.5% and .5%
- Explained variance R²
 - How well do your prediction variables explain hourly gas usage
 - Target threshold > 70%

Savings Uncertainty

- Fractional Savings Uncertainty (FSU)
 - Savings confidence interval adjusted for correlation between hourly data points. Divided by total savings estimate
 - Target threshold < 50%

$$CV(RMSE) = \frac{1}{\overline{y}} \left[\frac{\sum (y_i - \hat{y})^2}{(n - p)} \right]^{1/2}$$

$$NBE = 100 * \frac{\sum_{i} (E_i - \hat{E}_i)}{\sum_{i} E_i}$$

Uncertainty =
$$t \times 1.26 \times CV(RMSE) \times \sqrt{\frac{n}{n'} * \left(1 + \frac{2}{n'}\right) * \frac{1}{m}}$$

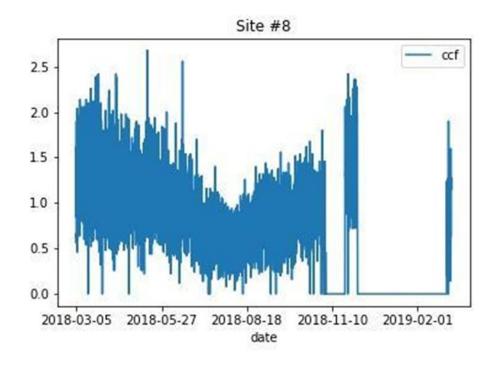
Data Quality Issues

- •Pre-screening gas AMI data quality not a program requirement
- •Utility reviewed all data quality concerned sites and verified data accuracy
- •Four identified data issues were identified during data pre-screening
 - Zero-value (CCF) reads
 - May miss key usage seasons
 - Poor temperature and gas usage correlation
 - Mild climate Greater Los Angeles area
 - Isolated domestic hot water usage measured end use
 - Low gas usage variability (same value repeated)
 - Impacts modeling capabilities
 - Low meter resolution
 - Hourly data exported as integers meter programming

Data Quality Issues – Zero reads

•Resolution – remove day when 22+ consecutive missing

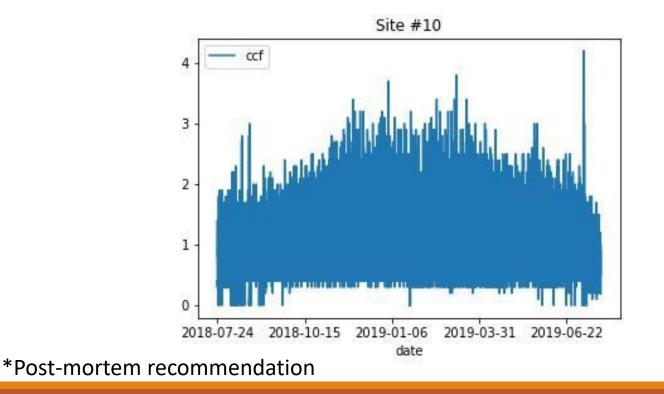
•In extreme case go back and pull more data



Data Quality Issues – Low temp-gas correlation

•Resolution – consider daily model instead of hourly*, find additional model variables

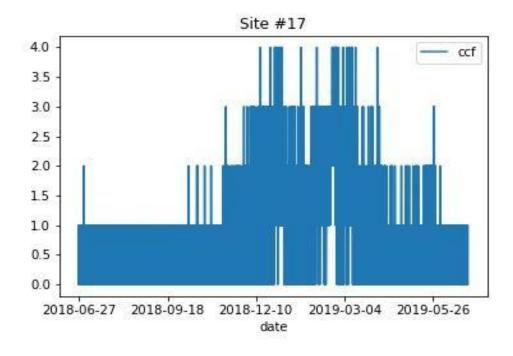
•Hourly variability masks seasonal correlation in model building



Data Quality Issues – Low gas variability/meter resolution

Resolution – consider daily model instead of hourly*

•Low gas usage variability makes model building challenging



*Post-mortem recommendation

Modeling Metric Results

•80% of program sites <u>failed</u> CV(RMSE) and R² program thresholds for baseline and performance models

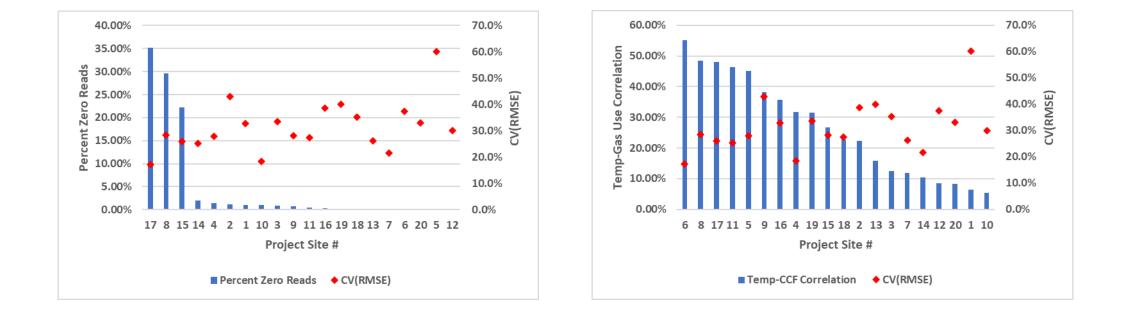
while...

•20% of program sites <u>passed</u> model uncertainty thresholds

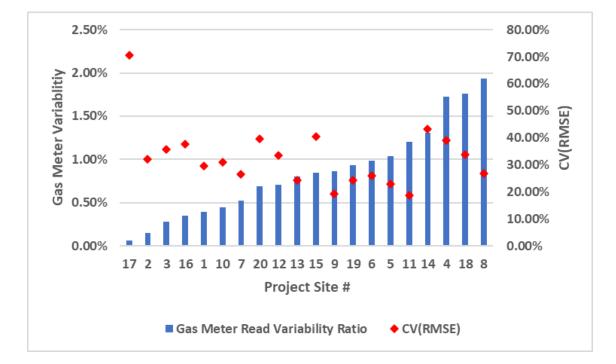
• Failed model goodness of fits were not good predictors of savings uncertainty

	# Sites Failing R ² (< 70%)	# Sites Failing CV(RMSE) (>25%)	# Sites Failing FSU (< 0 or > 50%)	Avg Site Savings (% baseline usage)
Baseline	16	15	4	8.7%
Performance	16	14	4	8.7%

Data quality issues and model metrics



Data quality issues and model metrics



IEPEC | NOVEMBER 1-4, 2022 | SAN DIEGO, CA

Alternative Modeling Approaches

•Do alternative model algorithms improve metrics? No, not much

- Tested 9 advanced regression and various machine learning model types on 4 poorest model sites
- Only slight metric improvements Poor data fit is simply a poor data fit
- •Tested daily aggregation in combination with alternative model option. Yes.
 - Hourly to daily gas usage aggregation help correct for data quality issues
 - 4 poorest model fit site were all able to pass CV(RMSE) metrics using daily models

Program Site	Hourly Model CV(RMSE)	Model Type	Daily Energy CV(RMSE)
17	70%	Gradient Boosting	24%
14	43%	Ridge regression	15%
15	40%	Ridge regression	23%
20	40%	Random forest	11%

Recommendations

•Program rules, designs, and planning can help hedge potential data quality issues

- Allow time for site/program data exploration for non-weather covariates (water, occupancy, etc.)
- Build in data quality screens into program requirements
- Allow model type flexibility
 - Advanced model types will not rescue
- Be willing to give up hourly granularity (e.g. daily aggregation) to improve model metrics and overcome data quality issues
- Industry standard (ASHRAE, IPMVP) baseline model metrics are not always good predictors of model uncertainty thresholds
 - Consideration for future IPMVP standard updates future research
 - Consider data science best practices instead of relying solely on traditional statistical metrics
 - E.g. cross validation, train-test methods, re-sampling model metric calculations