Evaluating the Cost-Effectiveness of Greenhouse Gas **Emission Reductions Associated with California's Statewide** Electric Vehicle Rebate Program in 2020 IEPEC (with a Discussion of Two-State Results in 2019)

International Energy Program Evaluation Conference (IEPEC) November 2, 2022

Nicholas Pallonetti – Research Analyst, CSE Brett Williams, PhD – Principal Advisor, EV Programs, CSE with thanks to E. Fullenkamp, K. Havel, M. Eluganti, and others at the Center for Sustainable Energy (CSE) and to client state agencies including CARB & MA DOER

Introduction

Context

- Reducing emissions is a primary motivation of investment in EV adoption – Results of EV emissions studies range widely due to differing goals, scopes, models, scales, timespans, and datasets used¹

Research Questions

- What impact can context- and case-specific analyses have on understanding GHG savings and cost-effectiveness of EV rebate programs like California's Clean Vehicle Rebate Project (CVRP)?
- What can be learned from trying to compare GHG outcomes for two states?

determination for project-reporting purposes. We thank CARB and DOER for the opportunity to contribute to the conversation.

¹ <u>https://sgp.fas.org/crs/misc/R46420.pdf</u>

Disclaimer: this study was conducted by the enter for Sustainable Energy to inform CVRP and MOR-EV. It does not necessarily represent the views of California Air Resources Board (CARB) or Massachusetts Department of Energy Resources (MA DOER) staff, nor does it represent a final

Statewide EV Rebate Program Designs During Study Period

Fuel-Cell EVs	\$4,500 (+2,500*)	\$1,500 (FCEVs unavailable in MA)
All-Battery EVs	\$2,000 (+2,500*)	\$1,500
Plug-in Hybrid EVs	BEVx = \$2,000 Others = \$1,000 <i>(+\$2,500*)</i>	BEVx only = \$1,500
Zero-Emission Motorcycles	\$750	\$450
	* Rebate adder: income-qualified	
Program Design	Base MSRP: PEVs ≤ \$60k	Purchase price ≤ \$50k
Elements	≥ 35 e-miles	
	Income cap	

Electric miles (e-miles) based on the Urban Dynamometer Drive Schedule (UDDS). BEVx = range-extended battery electric vehicle (BMW i3 REx).

CALIFORNIA CLEAN VEHICLE REBATE PROJECT

2020 purchases/leases

2019 purchases/leases

Program Application & Survey Data Summary

CVRP Application Data, 2020 purchases/leases

Rebate/ Technology type	Rebate counts	Total rebate d	
All	37,201	\$82,019,02	
Standard	32,416	\$61,515,02	
Stanuaru	(87%)	(75%)	
Incroaced*	4,785	\$20,504,00	
Increased*	(13%)	(25%)	
	6,348	\$9,639,00	
PHEV	(17%)	(12%)	
	141	\$344,500	
DEVX	(0.4%)	(0.4%)	
	29,966	\$68,394,62	
BEV	(81%)	(83%)	
	746	\$3,640,90	
FLEV	(2%)	(4%)	

* Increased rebates (+\$2,500) available to income-qualified consumers.

CVRP Consumer Survey Data, 2020 (Jan.–Nov.) purchases/leases

ollars

25

25

00

0

)

25

0

Survey responsesWeighted⁺ to represent
(program population)n = 4,445 $N = \sim 27,100$

⁺ Survey data weighted to represent the program population along the dimensions of technology type, vehicle model, county and buy vs. lease using iterative proportional fitting (aka raking method).

Methodology

Approach

- Use case-specific program data with the latest California-specific inputs.

Case-Specific GHG Reductions = Baseline Emissions – Rebated EV Emissions **Baseline or Rebated EV Emissions** = Fuel Carbon Intensity * Fuel Consumption Rate * Vehicle Miles Traveled

Quantification Period

- First-year GHG reductions are scaled to 100,000 miles (typical EV battery warranty)

Per-rebated-vehicle GHG reduction and cost-effectiveness estimates by technology/rebate type

Tech	nology/Rebate type	Average 100k mi. GHG reductions per vehicle (tons)	Rebate dollars per 100k mi. ton GHGs reduced
(Free -	PHEV	23	\$67
	BEVx	26	\$93
	BEV	29	\$78
	FCEV	16	\$304
Standard	Rebate	28	\$68
Low-/Mo Increased	derate-Income d Rebate	27	\$157
	AII	28 1,061 incandescent la	mps \$79
Gs = metric to	n CO ₂ -equivalent emissions	switched to LED (U.S. Grid Mi	os ⑦ 🛛 🖉 x, 1 year)

ton U.S. EPA GHG equivalency from: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Sensitivity Analysis

Results are particularly sensitive to uncertainty in baseline fuel efficiency

Baseline Fuel Efficiency

Electricity Carbon Intensity

Gasoline Carbon Intensity

PHEV/BEVx Electric Operation

Hydrogen Carbon Intensity

\$40

ton GHGs = metric ton of CO_2 -equivalent emissions

Input Tested

Rebate Dollars Per Ton GHGs Reduced (100k mi., all EVs)

Sensitivity Analysis: Quantification Period

Quantification period

Primary (100,000 miles)

2.5-year rebate "project life" (CARB 2019)

100,000-/150,000-mile battery warranty life

11.2-year average CA vehicle age (Auto Innovators

150,000 miles

15-year project-comparison life (CARB 2019)

200,000 miles

ton GHGs = metric ton of CO_2 -equivalent emissions. References provided in the IEPEC paper.

	Average GHG reductions per vehicle (tons)	Rebate dollars per ton GHGs reduced	
	28	\$79	
	9 (-68%)	\$245 (+208%)	
	30 (+7%)	\$74 (-7%)	
s 2021)	40 (+45%)	\$55 (-31%)	
	42 (+50%)	\$53 (-33%)	
	54 (+95%)	\$41 (-49%)	
	55 (+100%)	\$40 (-50%)	

Rebate-Essential GHG Reductions 2020 Purchases/Leases, 100k mi.

Cost-Effectiveness & Rebate Influence 2020 Purchases/Leases, 100k mi.

ton GHGs = metric ton of CO_2 -equivalent emissions

Cross-Study Comparisons EV emissions, grams/mile

Use of case-specific program data with context-specific inputs can enhance the understanding of EV impacts

[1] <u>https://ww2.arb.ca.gov/resources/documents/low-carbon-transportation-investments-and-agip-funding-plan-archive</u> [2] https://cleanvehiclerebate.org/en/content/evaluating-cost-effectiveness-greenhouse-gas-emission-reductions-associated-statewide

Results Over Time 2019¹ vs. 2020 adoption, 100k mi.

¹ https://cleanvehiclerebate.org/en/content/evaluating-cost-effectiveness-greenhouse-gas-emission-reductions-associated-statewide ton GHGs = metric ton of CO_2 -equivalent emissions

- PHEV increase largely from improving fuel efficiency
- BEVx, BEV and FCEV decreases largely from an improving gasoline baseline
- All increased slightly due to increased proportion of BEVs in the mix

Two-State Estimates¹ (2019 purchases/leases)

Using the best available inputs to optimize the analysis for each state in isolation complicates comparisons

Average GHG reductions per BEV (100k mi.)

30 tons

28 tons (preliminary)

- - be explained by the baseline fuel efficiency input

¹ https://cleanvehiclerebate.org/en/content/evaluating-cost-effectiveness-greenhouse-gas-emission-reductions-associated-statewide

5	Data	Inputs
	Case-specific program data	California-specific
	Case-specific program data	Regional or national

• **Differing input sources** appear to impact results as much as substantive differences

Standardizing inputs reduces accuracy, but reveals that the ~2-ton difference can best

Conclusion

- - Substantively changes prior GHG estimates
 - Enables evaluation of recent trends
- Comparing states can be a challenge:
- Ongoing opportunity to further refine analysis and broaden scope:
 - Results particularly sensitive to baseline vehicle fuel efficiency (and VMT/quantification period)
 - Limitations and next steps detailed in paper

Context-specific analyses can enhance the understanding of EV impacts:

– Optimizing the analysis for each state in isolation complicates comparisons – Differing input sources can influence results as much as substantive differences

Recommended citation:

N. Pallonetti and B.D.H. Williams (2022). Presentation: "Evaluating the Cost-Effectiveness of Greenhouse Gas Emission Reductions Associated with California's Statewide Electric Vehicle Rebate Program in 2020 (with a Discussion of Two-State Results in 2019)," given November 2nd to the 2022 International Energy Program Evaluation Conference (IEPEC), San Diego, CA.

nicholas.pallonetti@energycenter.org brett.williams@energycenter.org

CleanVehicleRebate.org

