An Evaluation of a Smart Grid Program

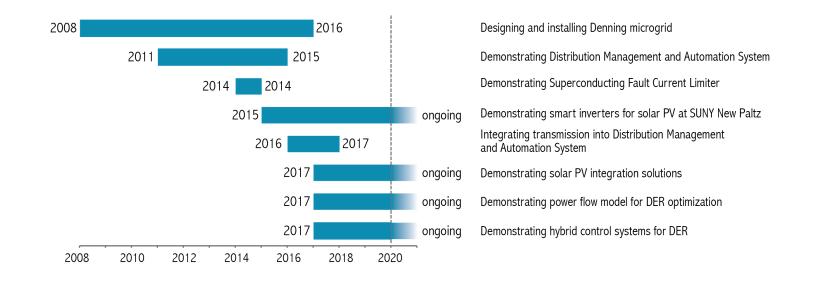
DANIEL KAUFMAN, PRINCIPAL INDUSTRIAL ECONOMICS, INC.

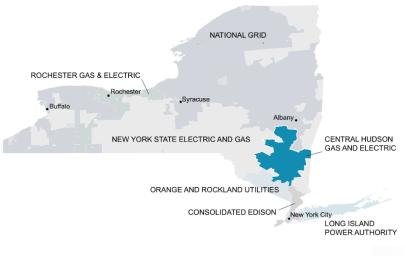
EC

Presented at the IEPEC 2022

The Challenge

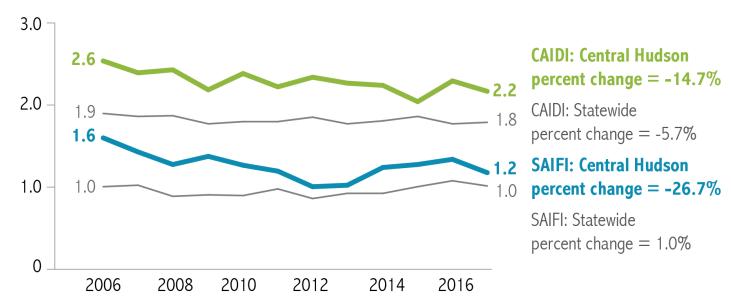
- NYS Climate Leadership and Community Protection Act (2019)
 - 85% reduction in GHG emissions from 1990 levels by 2050
 - 70% of electricity generation from renewable sources by 2030
 - 100% zero-carbon electricity by 2040
- Fundamental improvements to the grid are needed


NYSERDA's Smart Grid Program


- Promotes modernization of NY State's electric grid
- Funds R&D and technology development projects that can be implemented at utility scale
- Examples of smart grid technologies:
 - Remote sensing devices for monitoring grid conditions in real-time
 - Tools enabling two-way communication
 - Automated controls for optimizing grid performance

Central Hudson Gas & Electric

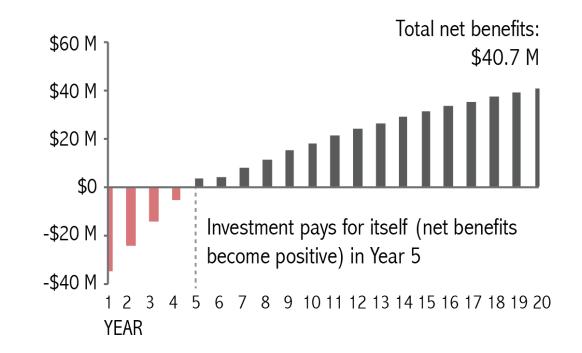
- Automated T&D management systems
- Superconducting fault current limiters
- Sensors, smart inverters and other monitoring and power



Benefits and Methods

- Reliability: CAIDI and SAIFI (reliability indices); ICE Calculator
- **Energy:** Reduced electricity consumption
- Economic: Avoided capital costs; reduced electricity costs
- Environmental: Reduced CO₂ emissions; social cost of carbon
- **Replication:** Utility interviews; investment plan review

Central Hudson (CH) has shown the most pronounced reliability improvement over the last decade among New York State utilities.



Grid Interruption Measures

\$19.4M in benefits to customers from 2006-2017 resulted from CH's reliability improvements.

Measuring Grid Reliability					
Grid Reliability Metric	2006	2017	Percent Change		
SAIFI: Central Hudson	1.61	1.18	-26.7%		
SAIFI: Statewide	1.00	1.01	1.0%		
CAIDI: Central Hudson (hours)	2.58	2.20	-14.7%		
CAIDI: Statewide (hours)	1.92	1.81	-5.7%		
Economic Value of Grid Reliability Improvements					
Scenario	2006 Impact (2019\$, millions)	2017 Impact (2019\$, millions)	Change in Annual Impact (2019\$, millions)		
ICE Calculator Valuation	\$79.1	\$59.7	\$19.4		
100% Attribution			\$19.4		
61.2% Attribution (improvements beyond statewide	\$11.9				
37.4% Attribution (10% reduction due to automation)			\$7.3		

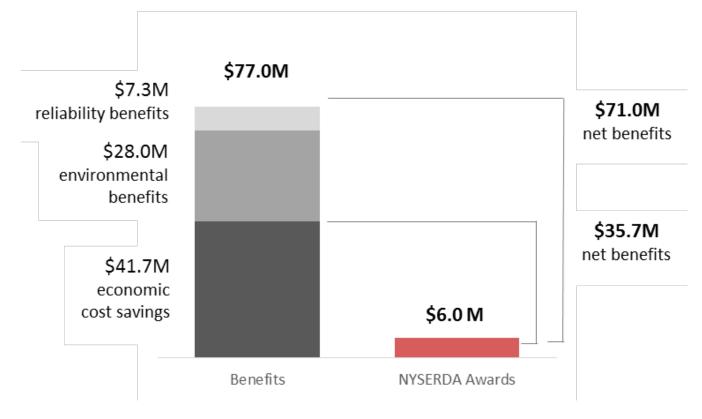
Net benefits of Central Hudson's investments are estimated to be \$40.7 million.

Costs:

\$46.3 million in costs incurred over the 5year financial planning period of the rate case, and \$5.0 million in subsequent costs

Benefits:

Reduced energy consumption (\$5.9 million annually) and two avoided capital upgrades (\$2.7 million annually each over the 5-year planning period)


Equipment lifespan: 20 years Discount rate: 7% (WACC)

Distribution automation (DA) results in \sim 741,000 metric tons CO₂ avoided over 20 years, valued at \$28M using the social cost of carbon.

Calculating Energy and Emissions Reductions				
Benefit		ue		
Annual reduction in energy consumption (\$ millions)		\$5.9		
Annual reduction in energy consumption (kWh, millions)		73.8		
20-year reduction in energy consumption (MWh, millions)		1.5		
Annual reduction in CO2e emissions (metric tons)		37,059		
20-year reduction in CO2e emissions (metric tons)		741,188		
Valuing Emissions Reductions				
	Value			
	Val	ue		
Metric	Val Central SCC	ue Higher SCC		
Metric Annual damages avoided, 2019 (\$2019 millions, present value)	Central	Higher		
	Central SCC	Higher SCC		

The net societal benefit of NYSERDA's funding is \$71.0 million. For each \$1 of NYSERDA funding, CH is expected to achieve ~\$12.83 in benefits.

NYSERDA-funded demos influenced CH's future investments and replications by other utilities.

- Con Edison and National Grid have learned from and adopted elements of CH's smart grid strategy.
- National Grid emulated CH's approach to grid communications and load forecasting in its efforts to roll out a DA system.
- CH set the standard for integrating GIS into utility operations.
 - Con Edison is in process of implementing an enterprise-wide GIS
 - Deployed online portal for RE developers that is same tool used by CH

11

Takeaways

- Massive investment is needed to modernize the grid and achieve climate and resiliency goals.
- Publicly funded programs can't do this on their own, but they can catalyze investment through demos & knowledge sharing.
- Evaluators and decision-makers should factor in the benefits and costs of program-inspired utility investments -- not only direct investments made by publicly-funded programs.
- Utility-scale grid modernization efforts can yield significant non-energy impacts (NEIs); these NEIs can and should be evaluated and considered in investment decisions.

12