

### SURVIVAL ANALYSIS OF BEHIND THE METER GENERATION PROJECTS

Ethan Barquest, Jean Shelton, Jonathan Pinko, Collin Elliot 2022 International Energy Program Evaluation Conference - San Diego, CA



# BACKGROUND

Self-Generation Incentive Program (SGIP)

- SGIP projects were estimated to provide 4,081 GWh of on-site electricity in 2018 and 2019 (combined)
- » Provides incentives for generation technologies:
  - Fuel Cells,
  - Gas turbines,
  - Internal Combustion Engines,
  - Micro-Turbines,
  - Pressure Reduction Turbine
  - Wind Turbines
- » Program focus has shifted away from generation technologies



# BACKGROUND

Decommissioning of Projects



#### **Current Scenario**

- Existing projects continue to age and become decommissioned
- New SGIP capacity additions and applications have decreased greatly since 2016.

#### **Research Questions**

- How much capacity of existing projects can be expected to remain operational in future years?
- Are there specific project characteristics that increase the likelihood of project decommissioning?
  - Technology
  - Fuel Type
  - Project Size (Capacity)
  - O&M Costs
  - Project Vintage

# SURVIVAL ANALYSIS METHODS

| Kaplan-Meier<br>(KM)          | <ul> <li>Step function of decreasing survival probabilities over time.</li> <li>Presents the actual survival curve of a population</li> <li>Does <i>not</i> allow for multivariate analysis</li> <li>Pairwise-Log Rank Test to check for significant differences between groups</li> </ul> |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cox<br>Proportional<br>Hazard | <ul> <li>Estimates relative risks of decommissioning between two levels of project characteristics (Hazard Ratio)</li> <li>Logistic regression-based model that allows for multivariate modeling</li> <li>Does not allow for time varying hazards</li> </ul>                               |
| Parametric<br>Modeling        | <ul> <li>Regression based approach that allows for multiple covariates</li> <li>Allows for both time constant and time varying hazard rates</li> <li>Assumes a defined parametric distribution</li> <li>Is used for predicting decommissioning in this study</li> </ul>                    |



# **KAPLAN-MEIER SURVIVAL CURVES**



## **TECHNOLOGY KM SURVIVAL CURVES**



# **KM SURVIVAL CURVES**





### **PROPORTIONAL HAZARDS**



Survival Analysis of Behind the Meter Generation Projects 8

# COX PROPORTIONAL HAZARD

#### Modeling

- » KM is great, but does not allow for a direct comparison of hazards within segments
- » Model Development
  - Multivariate model that includes; O&M costs, Size Bin, Project Vintage and Fuel Type
  - Technology groups are not included due to high correlation with other project characteristics
  - Large and medium sized projects are grouped together. KM curves show that these groups have virtually the same
  - **O&M costs are transformed** from \$/kWh to \$/100/kWh
- » Caveat: Cox Proportional Hazards do not allow for time varying hazards. KM curves show nonlinear survival curves and time varying hazard rates

# COX PROPORTIONAL HAZARD RATIOS

|                 |                        |        | Hazard Ratio |         | Statistically |
|-----------------|------------------------|--------|--------------|---------|---------------|
| Category        | Parameter              | Coeff. | -exp(Coeff)  | p-value | Significant?  |
| O&M Cost        | O&M Cost (Cent/kWh)    | 0.331  | 1.393        | 0.000   | Yes           |
| Capacity        | Capacity Size - Small  | 0.444  | 1.560        | 0.0126  | Yes           |
| Project Vintage | Vintage - 2005 to 2007 | 0.071  | 1.073        | 0.665   | No            |
|                 | Vintage - 2008 to 2010 | -0.436 | 0.646        | 0.0883  | No            |
|                 | Vintage - 2011 to 2020 | -1.239 | 0.290        | 0.0124  | Yes           |
| Fuel Type       | Non-Renewable          | 0.198  | 1.219        | 0.3149  | No            |

#### Interpretation

| Parameter                      | The probability of decommissioning                                                                                |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Normalized O&M Cost (Cent/kWh) | Increases by 39% for every \$0.01 increase in O&M \$/kWh                                                          |  |  |  |
| Capacity Size - Small          | is <b>56% higher</b> for small sized capacity projects                                                            |  |  |  |
| Project Vintage - 2011 to 2020 | is <b>71</b> % lower for projects installed between 2011 to 2020 compared to projects installed from 2002 to 2004 |  |  |  |



### **ESTIMATED AVAILABLE CAPACITY FOR FUTURE YEARS**



Survival Analysis of Behind the Meter Generation Projects

# **PARAMETRIC MODELING**

#### **Forecast Model**

- » Objective: Estimate available FC-CHP, ICE and MT project count and capacity in 2023, 2025 and 2030
- » We assume a **Weibull distribution** for our parametric survival model.
  - Allows for time varying hazards: allowing hazards to increase, remain constant and then increase again with time t.
- We use the same model specification used in the Cox modeling, which includes normalized O&M costs, capacity size bin, project vintage bins and fuel types



# **PROJECT CAPACITY (MW)**

**Forecasted Remaining Capacity** 



|         | Total<br>MWs<br>prior to | Active<br>MWs<br>prior to | Forecasted MWs of remaining capacity |      |      |
|---------|--------------------------|---------------------------|--------------------------------------|------|------|
| Tech.   | 2020                     | 2020                      | 2023                                 | 2025 | 2030 |
| FC- CHP | 42                       | 27                        | 23                                   | 23   | 22   |
| ICE     | 205                      | 155                       | 144                                  | 144  | 128  |
| MT      | 36                       | 26                        | 18                                   | 17   | 14   |
| Total   | 284                      | 208                       | 185                                  | 184  | 164  |

We estimate that by 2030 an **additional 44 MW** of SGIP capacity **will be decommissioned**.







Survival Analysis of Behind the Meter Generation Projects 14

### **FINDINGS**

- 1. The longevity of generation projects appears to be heavily influenced by their upkeep and maintenance (O&M) costs.
- 2. Fuel types have no statistically significant influence on survival, suggesting that the fuel source and relative fuel price differences do not play a significant role in decommissioning decisions. THIS MAY NOT HOLD OUTSIDE OF CALIFORNIA
- 3. Easy access to maintenance knowledge and skills may be important in decommissioning decisions. The combined O&M and fuel type results may point to the importance of the need to undertake maintenance to continue technology operation instead of strictly cost considerations as a primary determinant of decommissioning.



# FINDINGS

Continued

- 4. Smaller ICE, MT, and FC-CHP projects have a higher probability of decommissioning at a given time t. While the upfront cost of the system and the share of load the generation system provides was not included in this analysis, larger system may represent a larger investment for host customers, who then have a bigger interest in keeping their system online and operational.
- 5. We estimate that and additional 44 MW of capacity will be decommissioned by 2030, however, the majority of capacity will still be available.
  - Remaining Capacity estimates:
    - 185 MW in 2023
    - 184 MW in 2025
    - 164 MW in 2030



# THANK YOU

