IEc

Estimating the Economic Resiliency Benefits of Community Microgrids

Study Sponsored by: NY Prize Program NYSERDA

Principal Investigators: Maura Flight, IEc Chris Smith, IEc Brian Morrison, IEc

Project Presentation for: IEPEC Conference October 2022

Presentation Overview

- Study Background and Objectives
- Overview of Economic Impact Analysis
- Pilot Test Approach and Results
- Model Demonstration
- Discussion

Study Background

- Power outages can have a variety of social and economic consequences:
 - Access to critical services
 - Human health and safety
 - Disruptions to business activity, transportation, and communications
- In 2014, the NY State Governor's Office of Storm Recovery announced a \$17 billion strategy to enhance the ability of infrastructure to withstand severe weather events.
- NY Prize \$40 million competition to support development of community microgrids.
- IEc worked with NYSERDA to develop tools and methods to help evaluate costs and benefits of candidate microgrid projects.

Photo Credit: Engineering News

Study Objectives

- Methods and studies exist valuing the resiliency benefits:
 - Energy generation and capacity cost savings
 - Reliability improvements
 - Avoided environmental damages
 - Social welfare benefits
- EPRI (2017) identified methods for providing additional perspective on resiliency benefits, including economic impact modeling (e.g., employment, sales, GDP, etc.).
- This study focused on developing and pilot testing methods to evaluate the potential regional economic benefits of a microgrid in sustaining economic activity during an extended outage.

Economic Impact Analysis

- Economic impact analysis measures changes in economic activity.
- Metrics are indicators of economic productivity presented either by sector or in the aggregate across a specified region, including:
 - Economic output (revenue)
 - Value-added (GDP)
 - Income
 - Employment
 - Tax impacts
- Economic impact models estimate the **multiplier effects** (ripple effects) associated with a "shock" to an economy. The multiplier effects reflect impacts to multiple economic sectors that are linked through the supply chain.

General Approach for Pilot Test

- 1. Select project for pilot test
- 2. Define outage scenario
- 3. Estimate direct impacts (inputs to IMPLAN model)
- 4. Employ IMPLAN model to calculate multiplier effects
- 5. Outage scenario modeling options
- 6. Interpret results:
 - Uncertainty
 - Scalability
 - Transferability

Pilot Study Site: Rockville Centre (Nassau County, NY)

Facilities served by the RVC project support at least 8,000 employees and \$1.2 billion in annual output

Facility Type	Number in Microgrid
Non-EMS Medical	5
Hospital and EMS Medical	11
Government	4
Police	1
Fire	2
Water	3
Commercial	519
Traffic Signals	15
Residential	2,962

Photo Credit: rvcny.gov

Model 3, 5, and 7-day outages as the likely impact of a major storm

SIMPLE REPRESENTATION:

Without the microgrid: Assume 100% loss in economic activity during an outage

With the microgrid: Assume the facilities would retain full service and continue operations

- I/O Model: IMpact Analysis for PLANning (IMPLAN)
- Regional impact model commonly used by state and federal agencies for policy planning and evaluation purposes
- Also commonly applied in power outage literature
- Draws upon BEA and BLS data, among other sources
- Translates changes in expenditures into changes in demand for inputs from interrelated industries
- Functions are linear, results are scalable

Modeling Approach

MODEL INPUT

• **Direct effects:** Changes in economic activity by particular industry as a result of a change in demand for (i.e., sales of) the goods and services the industry provides.

MODEL OUTPUT

- Indirect effects: Changes in the output of industries that supply goods and services to those industries directly affected.
- Induced effects: Changes in household consumption arising from changes in employment and associated income that result from direct and indirect effects.

Metrics:

- Employment
- Labor Income
- Value Added
- Output

Inputs calculated as **changes in output** for affected businesses:

Data Sources:

- U.S. Census data for Nassau County: Assign commercial businesses to economic sectors. This assumes the distribution of commercial activity county-wide is representative of RVC.
- IMPLAN data: Total annual output and employment for affected sectors.

Assumptions:

- Estimate daily economic activity assuming economic activity evenly distributed over time.
- For simple representation model, assume total loss of this contribution (i.e., a complete shutdown of affected facilities during a 1-day outage).
- Scale results for the 3, 5, or 7-day outage.

Economic Impacts of a 1-Day Outage, 100% Economic Activity Loss

Study Area (Nassau County):

Impact Type	Average Annual Employment (Job-Years)	Labor Income	Total Value Added	Output
Direct Effect	18.5	\$1,016,028	\$1,801,497	\$2,878,631
Indirect Effect	7.0	\$416,186	\$704,062	\$1,188,481
Induced Effect	6.6	\$354,718	\$618,039	\$965,535
Total Effect	32.1	\$1,786,932	\$3,123,597	\$5,032,647

Rest of NY State:

Impact Type	Average Annual Employment (Job-Years)	Labor Income	Total Value Added	Output
Direct Effect	0.0	\$0	\$0	\$0
Indirect Effect	0.7	\$66,929	\$115,424	\$198,470
Induced Effect	0.5	\$32,837	\$56,923	\$94,020
Total Effect	1.2	\$99,766	\$172,348	\$292,490

Scaled Results for Additional Outage Scenarios

Total impacts for 3, 5, and 7-day outages, assuming 100% economic activity loss:

Outage Scenario Modeling Options

- Do not have to assume 100% economic activity loss for the entire outage.
- To reflect outage scenario, break outage into multiple "outage periods," with each period having a unique:

Recovery Factor = % of all businesses with power.

Resiliency Factor = % of normal economic output maintained by businesses without power OR % of lost economic output businesses can recover following the outage event.

• Each outage period can then be assigned an overall economic activity level.

Overall Economic Activity Level = % Recovery + [% Resiliency * (1 - % Recovery)]

Overall Economic Activity Level

		Resiliency Factor										
		0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	0%	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	10%	10%	19%	28%	37%	46%	55%	64%	73%	82%	91%	100%
	20%	20%	28%	36%	44%	52%	60%	68%	76%	84%	92%	100%
	30%	30%	37%	44%	51%	58%	65%	72%	79%	86%	93%	100%
Pocovony	40%	40%	46%	52%	58%	64%	70%	76%	82%	88%	94%	100%
Eactor	50%	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
Factor	60%	60%	64%	68%	72%	76%	80%	84%	88%	92%	96%	100%
	70%	70%	73%	76%	79%	82%	85%	88%	91%	94%	97%	100%
	80%	80%	82%	84%	86%	88%	90%	92%	94%	96%	98%	100%
	90%	90%	91%	92%	93%	94%	95%	96%	97%	98%	99%	100%
	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Outage Scenario Modeling Options (Cont.)

- Developed a spreadsheet tool that facilitates modeling of different outage scenarios.
- The tool calculates a **weighted average economic activity loss** based on the duration and overall economic activity level (EAL) for each outage period.

Weighted Average Economic Activity Loss = Σ [Duration * (1 - % EAL)]

		% Overall	_	
Outage	Outage Duration	Economic Activity	% Recovery	% Resiliency
Period	(Days)	Level	Factor	Factor
#1	3	0%	0%	0%
#2	2	50%	50%	0%
#3	2	63%	50%	25%
Total	7			

4.75

Weighted Average Economic Activity Loss (Days)

Sensitivity analysis for 7-day outage, assuming:

	Weighted Average Economic Activity	
	Loss	
Outage Scenario	(Days)	Description
Scenario 1	7.00	Assume 100% economic activity loss.
Scenario 2	6.50	Assume after five days, 25% resiliency factor.
Scenario 3	5.00	Assume after three days, 50% recovery factor.
Scenario 4	4.75	Assume after three days, 50% recovery factor; and after five days, 25% resiliency factor.

Scenario Results - Sensitivity Analysis (Cont.)

Total impacts for 7-day outage scenarios (study area):

Lessons Learned

• Characterization of affected businesses:

- Focus is on commercial and industrial business as opposed to government institutions and critical services (fire, police).
- Ideally rely on data on specific economic sectors of the facilities served by the microgrid.
- Assumptions regarding proportionality of losses:
 - Approach assumes economic productivity for businesses is distributed evenly over time and that productivity losses are proportional to the duration of an outage.
 - Model can build in flexibility to integrate resiliency and recovery factors; however, data are limited to inform the assumptions for these factors.
- Assumptions regarding efficacy of microgrid in avoiding outages:
 - Case study assumes microgrid would avert outages and economic losses.

Opportunities

- Method is replicable.
- Most useful for site that support commercial and industrial enterprises.
- Flows of dollars in markets and jobs are relatively straightforward metrics that the general public understands.
- Modeling approach is flexible in accounting for uncertainty with respect to resiliency and recovery factors. However, additional research on resiliency factors by sector would improve the analysis.

Acknowledgements

- Mike Razanousky, NYSERDA's Program Manager
- Rockville Centre's NY Prize team
 - Philip Andreas, Rockville Centre Electric Department
 - Arthur Castelli, RRT SIGMA Engineering
 - Patrick Venable, New York Independent System Operator (NYISO)

IEC

Maura Flight MFlight@indecon.com 617-354-0074