### CADMUS





# Can Residential Water Heaters Provide Reliable Demand Response Grid Services?

Demand Side Analytics

NOVEMBER 3, 2022



### Background

- Hawaii has 100% renewable energy goal by 2045
- Renewable energy subject to periods of ramping, intermittency, and over- and under-supply of power
- With retirement of coal and oil generators, Hawaiian Electric Company (HECO) must find new ways to balance its grid

Source: Hawaiian Electric Company. "Renewable Watch." Accessed March 14, 2019.



# HECO Grid Services Purchase Agreement

- In 2019, HECO reached Grid Services Purchase Agreement (GSPA) #1 with aggregator OATI, Inc.
  - Capacity build (1 MW), capacity reduction (10 MW), and FFR (11 MW) demand response
  - Pay-for-performance
  - Residential water heaters and PV/battery storage systems and commercial battery storage



### Water Heater Demand Response

- January 2020 Shifted Energy (subcontractor to OATI) began enrolling customers
  - Low- and middle-income residential customers in MF buildings on O'ahu
  - Participant monthly incentive payment
  - Pandemic slowed enrollment
- Electric resistance waters heaters retrofitted with Tempo smart controller
  - Grid interactive
  - Cellular communication capability



Source: Shifted Energy. https://www.shiftedenergy.com/technology/tempocontroller/

### **Research Questions**

- **1. Impact Assessment**: What kW impacts did the grid services deliver during demand response events?
- **2. Aggregator forecast accuracy**: Did the aggregator accurately forecast the availability of grid services?
- **3. Settlement Accuracy:** Do the GSPA #1 baseline calculation methods provide accurate estimates of the delivered capability?

### **Randomized Controlled Trial Evaluation**

- GSPA water heaters on O'ahu randomly assigned to a treatment group (n=733) or control group (n=730)
- Trial ran from January 21, 2021 to June 1, 2021

#### **DR Grid Services Events Summary**

| Grid Service       | Number of Events | Average Length<br>(hr:min:sec) | Event Window        |
|--------------------|------------------|--------------------------------|---------------------|
| Capacity Build     | 27               | 4:00:00                        | 10:00 a.m 2:00 p.m. |
| Capacity Reduction | 37               | 1:17:50                        | 5:00 p.m 9:00 p.m.  |
| FFR                | 1                | 0:04:53                        | 4:48 a.m 4:53 a.m.  |

- Regression analysis of WH 5 or 15-minute interval kW telemetry data
- Validated accuracy of telemetry data by installing 10 data loggers

### **Demand Response Impact Estimates**



### Event Day - March 2, 2021

CB Event, 10:00 a.m. to 2:00 p.m., CR Event, 6:00 p.m. to 8:00 p.m.



Figure shows unconditional mean electricity demand for water heaters in the RCT treatment and control groups on March 2, 2021. Hourly electricity demand calculated using 15-minute interval water heater electricity demand telemetry data.

### **Capacity Build Events**



- Average demand impact per WH:
  - 0.159 kW
  - +76% of the reference load
- Consistent delivery
- Some events doubled water heating electricity demand

Note: Error bars show 95% confidence intervals based on std errors clustered on water heaters

# **Capacity Reduction Events**



- Average demand impact per WH:
  - -0.321 kW
  - -95% of the reference load
- Consistent delivery
- Reduced electricity demand to near zero

Note: Error bars show 95% confidence intervals based on std errors clustered on water heaters.

10

# **Capacity Reduction Post-Event Snapback**



Note: Markers show the average increase in electricity demand per water heater after capacity reduction events. The error bars show the 5<sup>th</sup> and 95<sup>th</sup> percentiles of the distribution of estimates of snapback across the 37 events.

 Average increase in demand per WH in first 30 minutes after event

- 0.5-0.6 kW
- >+160% of reference load

# Fast Frequency Response



- WHs continuously measure frequency of AC
- Event triggered when frequency drops below 59.7 Hz
- Underfrequency event occurred on March 29, 2021 from 4:48:24 a.m. to 4:53:02 a.m.

<sup>12</sup> Note: Error bars show 95% confidence intervals based on std errors clustered on water heaters.

### **Forecast Accuracy**



# Forecasts of Grid Services Capability

- Aggregator delivers operational forecasts of grid services capability
  - Four-day ahead time horizon
  - 15-minute interval resolution
  - Updated every 12 hours for CB and LR and hourly for FFR
- Proprietary machine-learning algorithms
- Compensation depends on the closeness of delivered to forecasted capability
  - Penalized for errors in forecasting grid services capability

# **Evaluated Forecast Accuracy**

Forecasting accuracy improved during the RCT



Notes: Forecast is the aggregator forecast of per-device kW capability, ex-post is evaluation estimate of impact based on RCT, delivery capability is the estimate of the kW impact based on the baseline calculation formulas in the GSPA.

### **Settlement Calculations Assessment**



### Accuracy of Settlement Calculations

- GSPA #1 specifies methods for calculating baseline demand
  - CB and CR: 10-of-10 similar day baseline
  - FFR: demand in 5-minute interval immediately preceding event
- Do the prescribed methods yield accurate estimates of delivered capability?
- Evaluation approach
  - Simulated events on similar non-event ("pseudo-event") days
  - Demand impacts expected to be zero if baseline calculation methods are accurate

### **Settlement Accuracy Simulation**

10-of-10 baseline methods work well



Baselines perform well on the average pseudo-event day

Baselines do not consistently over- or under-predict the loads. Magnitude of errors is relatively consistent

### **Settlement Accuracy Simulation**

Interval-prior baseline methods work well for FFR events



- Slight tendency for the baselines to be biased upward
- Magnitude of these differences are small

### Conclusions



# Summary of Key Findings

- In general, capacity build events greatly increased water heater electricity demand relative to baseline demand
- During most capacity reduction events, water heating electricity demand nearly reduced to zero, showing most water heaters that would have been operating remained off
- FFR decreased water heating electricity demand in response to detection of an underfrequency event
- Accuracy of grid services forecasts improved
- The **baseline calculation methods** prescribed in the GSPA are sufficiently accurate for the measurement of grid service impacts

### Scaling DR Grid Services

- Due to pandemic, HECO DR grid services enrollment and capability were and remain lower than expected. But...
- The forecasting, delivery, and settlements for O'ahu WH demand response grid services largely went as expected
- Question: Can aggregators acquire enough capacity to meet their commitments under this and future GSPAs while keeping the DR grid services cost-effective?

### **Study Authors**

CADMUS Jim Stewart

Zachary Horvath

Phillip Kearns



### Josh Bode

Adriana Ciccone

Alex Xie



Yoh Kawanami









# Thank You

### Jim Stewart, Ph.D.

PRINCIPAL ECONOMIST

CADMUS

Jim.Stewart@cadmusgroup.com

2021 Impact Evaluation Report: <a href="https://dms.puc.hawaii.gov/dms/DocumentViewer?pid=A1001001A21K24B43239G03480">https://dms.puc.hawaii.gov/dms/DocumentViewer?pid=A1001001A21K24B43239G03480</a>