

WHEN TRUST MATTERS

The best of both worlds: Statistics and engineering working toward a good end (use)

Lullit Getachew, Ken Agnew, Steven Chang, DNV Peter Franzese, CPUC

02 November 2022

Background Data and methods Results Conclusions (\bigcirc)

Background

Study motivation

- Attribute savings to individual measures in the context of multiple overlapping installations
 - Overlaps -> make it difficult to discern the contribution of individual measures
 - Each measure mix may be associated with unique participant characteristics
 - There are also overlaps in the installations that limit the information each measure provides (collinearity)
 - Interactive effects -> measure savings are non-additive
 - Competing functions -> make it difficult to attribute the savings to individual measures

Study approaches

Use a variant of statistically adjusted engineering (SAE) method

> leverages better engineering estimates to decompose savings

leverages
 engineering savings
 proportions that can
 be useful for similar
 programs

Disaggregate

savings

Study setting

Study based on a large scale delivery of multiple measures across California

Year	2018
Program administrators	4 CA IOUs
Programs	14 direct install programs
End use targeted	Mostly HVAC use
Housing type targeted	Single family, multifamily, mobile homes
Participant cost	Low to none
Installed measures	About 200,000 electric- and 180,000 gas-saving measures

Technologies installed

Refrigerant charge adjustment (RCA)

75

Fan Controls

Smart

Thermostat

Condenser Coil Cleaning

Duct Testing and Sealing

Fan Motor Replacement

Percent of home receiving each technology – single family

Measure combinations – single family

	CON CLEMMA	FARCON FROM	Safer THESARC	our seame	NOTORREUL	went , wet	LIGHTHE	POWERSTREES	
COIL CLEANING	1.00	0.83	0.49	0.11	0.27	0.76	0.09	0.05	
FAN CONTROLS	0.90	1.00	0.49	0.12	0.29	0.68	0.06	0.05	
SMART THERMOSTAT	0.74	0.69	1.00	0.17	0.15	0.73	0.15	0.08	
DUCT SEALING	0.87	0.88	0.91	1.00	0.34	0.94	0.01	0.01	
MOTOR REPLACEMENT	0.75	0.74	0.27	0.12	1.00	0.37	0.14	0.04	
RCA	0.94	0.78	0.60	0.15	0.17	1.00	0.09	0.06	
LIGHTING	0.36	0.24	0.40	0.01	0.20	0.31	1.00	0.38	
POWER STRIPS	0.40	0.33	0.42	0.01	0.10	0.37	0.70	1.00	

0.6 0.4

Data and Methods

Tracking data

Customer information system data

11 DNV © 02 NOVEMBER 2022

Data - participant data

Participant Data Attrition	PG&E Electric	SCE Electric	SDG&E Electric
Customers with measures of interest in the 2018 tracking data	27,759	70,281	2,238
Customers with daily AMI data available for matching	13,715	28,948	1,151
Customers without on-site solar and sufficient AMI data for final analysis	13,473	28,727	635

Method – whole-home savings

Stage 1: model sitelevel data

Model pre- and post-period energy use as a function of weather

Generate normalized annual consumption (NAC)

Stage 2: model NAC

Model difference-in-difference (DID) in NAC from participants and matched comparators

Generate whole-home savings

Method – measure savings

The common dummy model

- Explains variation in pre-post NAC
- A model with multi-measure dummy variables
- Provides average measure savings estimates across all sites

The composite statistically adjusted engineering (SAE) model

- Explains variation in pre-post NAC
- A model with multi-measure dummy variables and *a priori* measure savings
- Provides measure savings that reflect variation by housing type and climate zone

The scaled SAE model

- Explains variation in pre-post % change in NAC
- A model with multi-measure dummy variables and a priori % measure savings
- Provides measure savings that reflect variation by housing type, climate zone, and HH size

Measure savings models

Whole-home savings model

Estimate of measure k savings for participant *i*

$$\%\Delta\left(\left(\hat{\beta}+\hat{\gamma}\%E\right)*PreNAC_{i}\right)*\left(\frac{E_{ki}}{\sum_{k}E_{ki}}\right)$$

Results

Whole-home savings

Measure savings – full models

Measure savings – full models

Measure savings – full models

Measure savings – full model

Mostly consistent savings across models for a given measure and home type

Some savings estimates are statistically insignificant – plausible

Some savings estimates are negative – implausible

Negative savings estimates indicate inability to isolate effects (correlated variables)

A priori information and scale (consumption level) do not fully overcome limitations of the simple model

Measure savings - full model

- Reasons for ill-determined measure savings
 estimates
 - Absence of (significant) savings due to "takeback"
 - Interactive effects between measures
 - Competing functions (e.g., SCTs and fan controls)
 - Significant overlap in installations making it difficult to identify separate effects of measures (figure on the right illustrates this)

Measure overlaps – single family

Significant overlap among some measures, for example:

SCTs overlap with fan controls in 69% of SF homes, with RCA in 73% of SF homes, with coil cleaning in 74% of SF homes

Coil cleaning overlaps with RCA in 76% of SF homes, with fan controls in 83% of SF homes

Overlaps prevent a statistical delineation of the marginal or individual measure savings contribution

Measure savings – reduced models

Given the challenges above, we bundled correlated measures and estimated reduced scaled SAE models

Variables	Scaled SAE Reduced Model 1			Scaled SAE Reduced Model 2			Scaled SAE Reduced Model 3			
	Mobile home	Multi- family	Single family	Mobile home	Multi- family	Single family	Mobile home	Multi- family	Single family	
CC, RCA	66	37	-30							
CC, RCA, FC				14	-1	59				
CC, RCA, FC, SCT							40	26	49	
Duct Sealing	20		158	37		171	33		161	
FC		-6								
Fan Motors	159	67	155	153	86	148	149	53	155	
Lighting, SPS	67	17	52	61	17	56	63	17	53	
SCT, FC	9		78							
SCT		62		62	62	-17				

Beige-shaded values represent statistically significant results

Disaggregating measure savings

Given the limitations noted, we estimated whole-home savings and disaggregated these into measures savings using the engineering measure savings estimates

For each participant, we used the measure-level proportion of the total engineering savings to disaggregate to measure level savings

For example, if the total estimated savings for a household were 100 kWh and a smart thermostat made up 50% of the total engineering savings, the estimated savings for the smart thermostat would be 50 kWh (100 kWh x .50).

Comparison of different measure savings

Comparison of measure savings estimates based on different approaches including savings apportioned using engineering savings proportions are presented for MF installations below

Conclusions

- Getting separate realization rates by measure has always been a challenge
- Our efforts suggest that it could be useful to combine either similar or highly overlapping measures prior to estimating measure-specific savings
- Our approach avoids nonsensical measure-level estimates from high overlap among measures
- It uses regression to determine program-level realization rate, and the engineering estimates to allocate to individual measures

Thank you.

Lullit.Getachew@dnv.com

www.dnv.com

DNV