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ABSTRACT  

Demand response (DR) programs are becoming increasingly important for utilities looking to avoid system 
load constraints. In anticipation of extreme grid demand, DR programs offer incentives for customers to 
reduce load within a time window on a specific day (a DR “event”). 

The most common methods for quantifying building-level load reduction during DR events rely on simple 
averaging algorithms using hourly load and temperature data from the days preceding the DR event to 
create a counterfactual baseline. Regression-based methods are now being applied to hourly meter data 
through advanced measurement & verification to quantify annual savings for energy efficiency projects, 
but are not typically employed for DR. A question arises as to how regression-based methods compare 
with established averaging methods for quantifying DR load reductions; specifically, how accurately can 
regression-based methods develop a counterfactual baseline prediction against which load reduction can 
be quantified? To address this question, an objective comparison/test method must be developed, as no 
standard baseline accuracy test exists. 

This paper summarizes the development and application of a method to compare DR baseline prediction 
accuracy of regression-based and averaging algorithms. We tested variants of three baseline modeling 
approaches using a data set of thousands of hypothetical DR event days using real buildings’ data from 
multiple regions in the United States. Our results indicate that all methods evaluated would tend to 
understate a counterfactual baseline, thereby understating achieved load reductions from DR programs, 
and that the regression methods tested do not offer a notable advantage over traditional averaging 
methods.  

Introduction 

In recent decades, demand response (DR) programs have evolved around two basic approaches: 
rate-based and incentive-based (Chai et al. 2019). California is an example of a state where the role of DR 
has grown considerably over the past two decades. In 2003 the California Energy Commission designated 
DR as being first in the “loading order” (the order in which resources are to be deployed), along with 
energy efficiency. As a result, the California Public Utilities Commission (CPUC) set a goal to meet 5% of 
the electric system’s annual peak energy demand with DR by 2007 (whereas previously DR had only been 
occasionally used and considered as a kind of “insurance policy”) (Jarred 2014). As of 2017, almost 19 
million utility customers were enrolled in DR programs across the United States (FERC 2019). 

Under incentive-based DR approaches, utility customers can receive significant financial 
incentives to reduce electric load during times of peak grid stress (typically referred to as a DR “event”). 
For example, the Eversource ConnectedSolutions DR program offers $35 per average kilowatt reduction 
for DR events that are called during summer months, with an expectation of no more than eight events in 
that time period (Eversource 2020).  

It is important to quantify the impacts of incentive-based DR programs, both at the individual 
building level (for calculating incentive payments) and at the aggregate level (for programs or regions), to 
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ensure that incentives are correctly calculated and to better understand the consistency of the delivered 
load reductions.  

Background 

The foundation for quantifying temporary load changes at the individual building level is to gather 
electricity consumption data prior to the DR event (the baseline period) and use it to create 
“counterfactual” load predictions, i.e., estimates of what the load would have been during the event 
period in the absence of the DR strategies deployed. Program evaluations performed at the aggregate 
level have a broader selection of established methods available for quantifying impacts (including the use 
of comparison groups), but may employ building-level counterfactual load predictions in some 
circumstances. 

Literature Review 

Much prior work has been conducted to assess methods for predicting building-level 
counterfactual energy consumption for commercial buildings; examples of this prior work are summarized 
below.  

A California-based 2017 study (Bode and Ciccone 2017) assessed 36 permutations of three 
different DR baseline calculation methods, applied to large aggregations of building loads (as opposed to 
the loads for individual buildings): 

 
● Control groups, where a group of meters with statistically similar electricity consumption during 

the baseline period are used to determine the counterfactual consumption during the event 
period for a group of residential DR customers.  

● Weather-matching, where non-event baseline days with similar ambient temperature 
conditions are selected for each meter and data are averaged. 

● Day-matching, where a subset of non-event days in close proximity to the event day are 
identified and their load data are averaged to produce baselines for an individual meter. 
 
Additional multiplicative adjustments were made to the weather-matching and day-matching 

algorithms, based on the difference between predicted and actual load during pre-event or post-event 
hours. Baseline prediction accuracy was quantified using two metrics for assessing prediction bias and 
precision: mean percent error (MPE) and the coefficient of variation of the root mean squared error 
(CV[RMSE]). The study recommended calculation parameters for each of the three approaches tested, 
asserting that, for the California program dataset tested, multiple baseline rules can deliver sufficiently 
unbiased and precise baselines for pooled aggregates of buildings, including weather-matched and day-
matched algorithms.  

A study commissioned by the PJM1 Load Management Task Force assessed several DR baseline 
approaches (including averaging and regression approaches), analyzing a total of 36 baseline calculation 
methods (KEMA 2011). The methods assessed included several types of adjustment for day-of-event 
conditions, including load additive adjustment, load ratio adjustment, weather sensitive adjustment, and 
no adjustment. The PJM results show that predictive accuracy can vary based on weather-responsiveness 
of load and the timing/season of the event window, and that adjustment of load estimates based on day-
of-event conditions is highly beneficial. The study recommended four methods (all with additive 
adjustment) where median bias value across all meters analyzed was at or close to zero: 

 
1 PJM is a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or 
parts of 13 states and the District of Columbia (www.pjm.com). 

http://www.pjm.com/
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1. Prior-day baseline and current day meter data.  
2. Day-matched with a prior 10 days’ average. 
3. High four days of most recent 45 days. 
4. Day-matched with middle four of prior six days. 

 
A 2013 study examined a number of DR baseline estimation methods used by utilities and 

electrical system operators across the United States and evaluated them in terms of accuracy and bias 
levels. They acknowledged the possibility of both bias and random error, and described four main 
strategies for addressing those issues: (1) perform baseline method assessment studies, (2) make 
operational adjustments (e.g., de-rate DR savings to avoid overcounting), (3) make adjustments to 
program rules, and (4) treat the DR program as an iterative process, adapting the program measurement 
and verification (M&V) approach based on ongoing results and the customer mix (Goldberg and Agnew 
2013).  

A 2002 study for the California Energy Commission tested DR baseline prediction accuracy for a 
variety of calculation methods (including averaging and regression) and found that additive adjustments 
were generally required to compensate for underestimation of load during hypothetical events. The study 
noted several potential challenges with this type of adjustment if applied to real DR events, such as the 
possibility of building owners gaming results by deliberately increasing building loads prior to the DR 
event. Further, the study noted that the baseline estimation applied to any given building needs to be 
tailored to unique circumstances such as the weather-sensitivity of its load, and whether the event is 
occurring in summer or winter months (Xenergy 2002). 

Similar to Xenergy, Grimm 2008 also noted a need for DR baseline methods to minimize the risk 
of gaming (e.g., with a short notice period prior to a DR event, a customer could not deliberately inflate 
their consumption prior to the event; Grimm 2008), and found that methods using multiple pre-event 
days reduced the risk of gaming.  

Advanced M&V methods have emerged over the past decade, employing hourly or sub-hourly 
data and sophisticated modeling approaches to quantify energy efficiency annual savings with a high 
degree of accuracy (Franconi et al. 2017). The “time of week and temperature” (TOWT) model is a 
piecewise linear regression that has been well documented in the literature (Mathieu et al. 2011; 
Granderson et al. 2016). The TOWT model and its variants also have been incorporated into utility 
program efficiency M&V and industry tools as an accepted method (CalTRACK 2018; Granderson et al. 
2019; Crowe et al. 2019). Some of the first uses of this model targeted DR applications (Kiliccote et al. 
2010; Mathieu at al. 2011; Price et al. 2015). Price et al. (2015) assessed the predictive accuracy of a more 
complex variation of the TOWT model, with a custom adjustment based on model residuals for recent 
non-prediction days. A cross-validation test of the studied model, assessing peak day predictions from 
12:00 pm to 6:00 pm, showed median bias of less than 4% (“baseline percent error,” where a positive 
value indicates the predictions were higher than actual consumption), compared to 6% for a day-matched 
10-day algorithm and 5% for the TOWT model. 

Academic literature on methods for predicting commercial buildings’ energy consumption are 
common, but rarely focus on predictive accuracy for timescales aligning with DR and using whole building 
electricity consumption data. 

Study Overview  

This study complements the body of prior work by evaluating whether a regression model that 
has proven accurate for predicting annual energy use is also accurate in predicting short-duration peak 
loads, when compared to methods that are commonly used in today’s DR programs. It presents predictive 
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accuracy results using interval meter data drawn from several regions of the United States, for eight 
analysis algorithms and three different time periods for over a thousand peak prediction days.  

The specific research questions answered in this work were: (1) How does the advanced M&V 
regression-based approach compare to the established averaging methods? (2) Does the duration and 
timing of the DR event window have a significant impact on the prediction accuracy? and (3) Are there 
notable differences in the distribution of prediction accuracy results across a large population of meters 
when employing different baseline prediction methods? 

Method 

The DR baseline predictive accuracy assessment presented in this paper is based on a five-step 
process, as shown in Figure 1. 

 

 
Figure 1. DR baseline predictive accuracy assessment process 

 
This study was targeted at commercial buildings. Three prediction windows were tested under 

this study: 10:00 am to 6:00 pm, 12:00 pm to 6:00 pm, and 1:00 pm to 4:00 pm. These were selected to 
allow for comparison and their selection acknowledges that DR events may occur during different time 
windows depending on region, generation mix, and weather conditions. 

Figure 2 illustrates the baseline energy consumption data (orange) used by one prediction 
algorithm for one test case (i.e., a specific time window on one prediction day); this example is for a TOWT 
model using seven weekdays prior to the prediction day as baseline data. Figure 1 also shows the 
associated prediction window (10:00 am to 6:00 pm) on the event day (July 18) and plots the actual 
consumption (red) and the predicted values (green) from the TOWT model based on local ambient 
temperature data for each hour. 

Collate a dataset of hourly load and ambient temperature data for 
commercial buildings’ meters with no known efficiency improvements 
or DR events.

For each meter, identify the days on which the highest loads occurred 
(which are considered the most likely candidate days for DR events) 
and define load prediction periods corresponding with typical DR 
event time windows.

Use the algorithms of interest to predict hourly load during the 
prediction time windows defined in item 2 above, compare the 
predicted load to the actual load, and calculate error metrics for each 
prediction window.

Repeat the steps above for all meters in the dataset, and quantify the 
distribution of error metrics for each algorithm.

Compare the distributions and median error metrics for each 
algorithm.
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Figure 2. Example plot showing the prediction period (10:00 am to 6:00 pm on July 18) and 

baseline data used for one prediction algorithm studied. 

Data Preparation 

The test dataset covered 12 months of hourly electric consumption (kilowatt-hours, kWh) and 
hourly outside air-dry bulb temperature. The test data were selected from an existing dataset available to 
the researchers, drawn from 453 commercial buildings where no known energy efficiency projects or DR 
events had occurred. The data covered three U.S. Building America climate zones (Baechler et al. 2015): 
Marine, Cold, and Mixed-Humid. The test data were intentionally diverse in terms of region, consumption, 
and property type, to allow for assessment of algorithms across a diverse set of conditions. All data were 
cleaned of obvious erroneous values, such as unrealistically high or low temperature.  

After removing holidays and weekends for each meter, the ten days with the highest maximum 
daily load were identified and selected as test cases (“prediction days”) for this study. Any candidate day 
that did not have a sufficient history of data to satisfy all of the baseline methods was excluded; for 
example, the weather-matching algorithm required 90 days’ worth of data prior to the prediction day. 
The result was 1,104 prediction days that were used in the analysis, a sufficiently large quantify to 
determine overall performance and variability of the algorithms’ predictive capabilities.  

 

Peak Prediction Algorithms  

Three peak prediction algorithms were assessed in this study, including two averaging algorithms and a 
regression method. Each of these methods is described below. 
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Averaging Methods. Two averaging methods were selected based on the best results reported in Bode 
and Ciccone 2017: 

 
• Day-Matching: Baseline data drawn from the 10 working days immediately prior to the event 

day.  
• Weather-Matching: Baseline data drawn from the four days out of the 90 days prior to the 

event with maximum temperature closest to the maximum temperature of the event day.  
 
For both day-matching and weather-matching algorithms, for each hour of the event day, the 

corresponding hours from the baseline data are averaged to calculate hourly predictions for the event 
window. These two algorithms were selected for this study as two contrasting options that had been 
shown to perform well and are in current use. 

 
Regression Method. TOWT was selected for this study as an industry-accepted regression model. TOWT 
is a piecewise linear model where the predicted energy consumption is a combination of two terms that 
relate the energy consumption to the time of the week and the piecewise-continuous effect of the 
temperature. In previous studies (e.g., Granderson et al. 2016) the TOWT model was shown to be accurate 
at predicting annual consumption using hourly data, equaling or outperforming other M&V industry 
standard models. The TOWT model uses time of the week and outside air temperature as independent 
variables, and can be configured to add weighting to data toward the end of the baseline period (i.e., 
closer to the peak prediction window being studied). The TOWT model variants tested under this study 
were: 

 
1. 7 baseline days, no weighting. 
2. 70 baseline days, 14 days weighted. 
3. 70 baseline days, 10 days weighted. 

 
Adjustments for Day-of-Event Conditions. As noted earlier, adjustment methods have been developed 
to account for weather impacts to load on peak days; specifically, that peak days are likely to see higher 
temperatures than the baseline days preceding them. These methods are based on observed load before 
and/or after the event window. The adjustment approach documented in Bode and Ciccone 2017 was 
used in this study. Adjustments were calculated by comparing actual and predicted loads during hours 
prior to the prediction window (“adjustment hours”) and using that information to scale the predictions 
during the prediction window (see Equation 1). Adjustment hours were selected with a buffer period of 
two hours from the prediction window (e.g., for the prediction window 12:00 pm–6:00 pm, adjustments 
were based on loads between 8:00 am and 10:00 am).  

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑘𝑘𝑘𝑘ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
      (1) 

 
Adjustment ratio caps applied in this work followed the recommendations in Bode and Ciccone 

2017: 40% for weather-matching, and 20% for day-matching. A 40% adjustment cap was also applied for 
one TOWT variant. Table 1 lists each of the algorithms and variants tested. 

 
Table 1. Peak Prediction Algorithms Tested 

 

Algorithm Variant* Abbreviation 
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Day-Matching Unadjusted DMU 

Adjusted DMPA 

Weather-Matching Unadjusted WMU 

Adjusted WMPA 

Time-of-Week-and-Temperature 
(TOWT) 

7-day baseline (no weighting) UWTOWTU(7.0) 

7-day baseline (no weighting) (adjusted) UWTOWTPA(7.0) 

70-day baseline (14-day weighting) UWTOWTU(70.14) 

70-day baseline (10-day weighting) UWTOWTU(70.10) 

* Adjustments were applied to all algorithms except for the weighted TOWT models, which were excluded due to 
timing and resource constraints. 

Assessment Metrics 

Normalized mean bias error (NMBE) and the coefficient of variation of the root mean squared error 
(CV[RMSE]) have been used in prior work to assess accuracy of advanced M&V models (Granderson et al. 
2016). NMBE and CV(RMSE) are also familiar to M&V practitioners as model fitness metrics, featuring in 
resources such as ASHRAE Guideline 14 (ASHRAE 2014). Equations 2 and 3 below define NBME and 
CV(RMSE) respectively, where 𝑦𝑦𝑖𝑖  is the actual metered load value, 𝑦𝑦�𝑖𝑖  is the predicted load value, 𝑦𝑦� is the 
average of the 𝑦𝑦𝑖𝑖, and N is the total number of data points.  

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
1
𝑁𝑁 𝛴𝛴𝑖𝑖

𝑁𝑁(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)

𝑦𝑦�
× 100             (2) 

 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =
�1
𝑁𝑁 𝛴𝛴𝑖𝑖

𝑁𝑁(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

𝑦𝑦�
× 100  (3) 

 
For this study metrics were calculated based on model predictions of data not used in the model 

creation, a process known as cross-validation or out-of-sample testing. NMBE and CV(RMSE) values closer 
to zero indicate more accurate predictions. Bias (NMBE) may be positive or negative, with positive values 
indicating underprediction (i.e., predicted values lower than actual values). When applying NMBE to 
assess model fitness, model specification is the primary source of error/bias, and an NMBE value of zero 
is achievable. When applying NMBE for out-of-sample testing, the data not used in model creation 
introduces additional potential for error. For example, the out-of-sample data may be taken from a time 
period after a building occupancy change. This study was designed to mitigate this potential error in two 
ways: through selection of a large dataset, to counteract the possibility of including some buildings with 
operational changes; and by focusing mainly on median NMBE results, to eliminate skew effects from 
outliers. It should be noted that this study is intended to provide an objective comparison between 
different algorithms, as opposed to expecting zero bias for any individual algorithm. 

While CV(RMSE) and NMBE values were calculated for all test cases, only NMBE results are 
reported here, since the broad conclusions are the same for both metrics and NMBE results are more 
easily interpreted. 
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Results 

Figure 3 shows a single prediction window for each tested algorithm. The plot shows actual hourly 
meter readings and the algorithms’ predictions for the hours between 10:00am and 6:00pm on a single 
prediction day. This provides a visual example as context for the results that follow (this is illustrative, not 
a typical or average result), which summarize predictive accuracy across all the models for each of the 
1,104 prediction days. 

  
Figure 3. Example prediction window (10:00 am to 6:00 pm) for a single meter, illustrating the 

predictions from each of the tested algorithms compared with actual consumption.  

 
Figure 4 shows the distribution of NMBE results for each prediction algorithm, and for the three 

prediction windows: 10:00 am to 6:00 pm, 12:00 pm to 6:00 pm, and 1:00 pm to 4:00 pm. The box and 
whisker plots indicate the 10th, 25th, 50th, 75th, and 90th percentile values. 
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Figure 4. NMBE results distribution for 10:00 am – 6:00 pm (left), 12:00 pm – 6:00 pm (center), 

and 1:00 pm – 4:00 pm prediction windows 

The results indicate no significant difference in predictive accuracy for the three prediction 
windows, and no consistent pattern in terms of which prediction window saw the highest or lowest 
median values. Figure 4 also shows significant overlap in distribution between all the algorithms.  

The results also show wide distribution for all methods (with WMU algorithm having the widest 
distribution), with significant overlap between algorithms. All median NMBE values were biased in a 
positive direction (see Table 2), indicating underestimation of the load during peak hours. The lowest 
median bias (4.5%) was observed for the unweighted, adjusted TOWT regression with the 1:00 pm–
4:00 pm prediction window; this median value is still considered high relative to published literature. 
Additionally, the results show that the application of adjustments had a significant effect on NMBE. 
Adjustments were applied in three cases (DMPA, WMPA, and UWTOWTPA), across the three event time 
windows; in six out of nine of these cases the adjustment reduced the median NMBE value by over 50% 
(compared to DMU, WMU, and UWTOWTU respectively). Table 2 summarizes the NMBE median values 
for all algorithms and prediction windows. 

Table 2. Median NMBE values for tested algorithms 

 

 NMBE 

Prediction Algorithm 10:00am - 
6:00pm (%) 

12:00pm - 
6:00pm (%) 

1:00pm  
- 4:00pm (%) 

DMU 16.9 17.5 17.3 

DMPA 8.1 7.5 7.4 

WMU 18.7 18.7 18.4 

WMPA 10.3 7.4 7.0 

 UWTOWTU(7.0) 9.1 9.8 9.5 
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UWTOWTPA(7.0) 5.8 6.0 4.5 

WTOWTU(70.10) 12.5 13.1 11.6 

WTOWTU(70.14) 12.9 13.3 12.1 

Conclusions 

The research questions answered in this work are repeated below, with conclusions relating to 
each question. 

 
Research question 1: How does the advanced M&V regression-based approach compare to the 
established averaging methods? 

Industry-accepted baseline techniques and model-based approaches underpredicted peak period 
consumption for the selected test dataset. If this dataset and these methods had been used for real DR 
events, they would have significantly under-credited the DR load-reduction benefits. Median bias varied 
between algorithms, with the unweighted 7-day TOWT algorithm (with adjustment) having the lowest 
median bias value (Table 2). 

We note that median bias values in this study are larger than many of the examples reported in 
prior literature—some of which are biased toward an underprediction, some toward an overprediction, 
and some near to zero. This may reinforce the notion that: (1) a high degree of customization is needed 
to identify an approach and adjustment method that will provide accurate predictions of peak building 
loads (e.g., based on climate, building loadshape characteristics, etc.), and (2) methods that work in one 
case are not assured to be generalizable. 

 
Research question 2: Does the duration and timing of the DR event window have a significant impact 
on the prediction accuracy? 

Given the observed similarity of median bias results across the three different time windows 
(Table 2), ranging from three to eight hours and with different start times, we conclude that duration and 
timing of the DR event did not have a significant impact on the prediction accuracy under this study. 
 
Research question 3: Are there notable differences in the distribution of prediction accuracy results 
across a large population of meters when employing different baseline prediction methods? 

Figure 4 shows there was significant overlap in the distributions across all algorithms tested, 
suggesting similar performance trends overall. Weather-matched algorithms exhibited the widest 
distribution in NMBE, and all algorithms saw an interquartile range exceeding 10%.  

 
By definition, a peak day will see temperatures and loads outside the range observed prior to the 

event day, irrespective of the time window chosen on that particular day. Any baseline estimation 
approach will be limited in predicting consumption outside of the range of independent variables 
observed in the training period; by design, this study selected prediction days that represented the peak 
consumption for each meter, exacerbating this limitation. The study results, therefore, may represent the 
worst case in terms of error due to a lack of representative independent variable data during the training 
period.  
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Given that increasing levels of renewables are driving a need for building load flexibility in support 
of grid stability, these results highlight the opportunity to improve peak load prediction methods and to 
reduce the dependence on customized adjustments.  

The test dataset used for this research was intentionally broad, covering a range of geographical 
regions to assess prediction robustness across a wide range of conditions. It is possible that a more 
intentionally curated dataset may allow for tailoring a more accurate prediction method limited to a 
narrower set of building typologies and climates. Identifying actual DR event days within a region and 
selecting commercial buildings’ data from those days (for buildings that did not participate in the DR 
event) would be another potential approach to selecting test data. 

Possible future research should explore different model types (e.g., machine learning, quantile 
regression) and/or assess the potential benefits from inclusion of different independent variables such as 
cooling load. Further study could also consider whether different algorithms might be matched to 
different buildings based on those buildings’ loadshape characteristics (e.g., weather-dependency 
of load). Changing the pre-adjustment calculation and changing the cap value may be worth testing, 
though as noted above, there is a risk that this would result in an arbitrary calculation adjustment driven 
by a specific dataset and would not be generalizable across different regions, building types, etc. Further, 
if applied to DR programs, a higher adjustment cap would increase risk exposure for gaming. 

Acknowledgements 

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, 
Building Technologies Office, of the U.S. Department of Energy under Contract No. DE AC02-05CH11231. 

References 

ASHRAE. 2014. “ASHRAE Guideline 14-2014 for Measurement of Energy and Demand Savings.” 
American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA. 

 
Baechler, Michael C., Theresa L. Gilbride, Pam C. Cole, Marye G. Hefty, Kathi Ruiz. 2015. “Building 

America Best Practices Series Volume 7.3: Guide to Determining Climate Regions by County.” Pacific 
Northwest National Laboratory. PNNL report number: PNNL-17211 Rev. 3. 
https://www.energy.gov/sites/prod/files/2015/10/f27/ba_climate_region_guide_7.3.pdf.  

 
Bode, Josh, Adriana Ciccone. 2017. California ISO Baseline Accuracy Assessment. CAISO Baseline 

Accuracy Working Group. 
 
CalTRACK. 2018. “CalTRACK Technical Documentation: Modeling Hourly Methods.” Retrieved 

from: http://docs.caltrack.org/en/latest/methods.html#section-3-b-modeling-hourly-methods. 
 
Chai, Yanxin, Yue Xiang, Junyong Liu, Chenghong Gu, Wentao Zhang, Weiting Xu. 2019. “Incentive-

Based Demand Response Model for Maximizing Benefits of Electricity Retailers.” Journal of Modern Power 
Systems and Clean Energy 2019; 7:1644-1650. DOI: https://doi.org/10.1007/s40565-019-0504-y. 

 
Crowe, Eliot, Jessica Granderson, Samuel Fernandes. 2019. “From Theory to Practice: Lessons 

Learned from an Advanced M&V Commercial Pilot.” Proceedings of the 2019 International Energy 
Program Evaluation Conference.  

 
Eversource. 2020. “Earn Money & Save Energy: Earn incentives for helping reduce peak demand 

and carbon emissions.” Eversource program marketing literature. Accessed December 21, 2020. 



2022 International Energy Program Evaluation Conference, San Diego, CA 

https://www.eversource.com/content/docs/default-source/save-money-energy/curtailment-demand-
response.pdf?sfvrsn=8b3bc962_4.  

 
Federal Energy Regulatory Commission. 2019. “2019 Assessment of Demand Response and 

Advanced Metering.” FERC Staff Report. https://www.ferc.gov/sites/default/files/2020-04/DR-AM-
Report2019_2.pdf.  

 
Franconi, Ellen, Matt Gee, Miriam Goldberg, Jessica Granderson, Tim Guiterman, Michael Li, Brian 

A. Smith. “The Status and Promise of Advanced M&V: An Overview of M&V 2.0 Methods, Tools, and 
Applications.” Rocky Mountain Institute, 2017 and Lawrence Berkeley National Laboratory, 2017. LBNL 
report number ##LBNL-1007125. 

 
Goldberg, Miriam, Ken Agnew. 2013. “Measurement and Verification for Demand Response: 

Development of a Standard Baseline Calculation Protocol for Demand Response.” National Forum on the 
National Action Plan on Demand Response: Measurement and Verification Working Group. 

 
Granderson, Jessica, Samir Touzani, Eliot Crowe, Samuel Fernandes, Shankar Earni, Kaiyu Sun. 

2019. “Realizing high-accuracy low-cost measurement and verification for deep cost savings.” Final Project 
Report. DOI: https://dx.doi.org/10.20357/B7TS3G.  

 
Granderson Jessica, Samir Touzani, Claudine Custodio, Michael Sohn, David Jump, Samuel 

Fernandes, 2016. “Accuracy of Automated Measurement and Verification (M&V) Techniques for Energy 
Savings in Commercial Buildings.” Applied Energy, 173, pp.296-308. 

 
Grimm, Clifford. 2008. “Evaluating Baselines for Demand Response Programs.” AEIC Load 

Research Workshop. 
 
Jarred, Michael W. 2014. “Delivering on the Promise of California’s Demand Response Programs. 

Policy Matters.” Policy Matters, June 2014. California Senate Office of Research. 
https://sor.senate.ca.gov/sites/sor.senate.ca.gov/files/SOR_Policy_Matters--Demand_Response.pdf.  

 
KEMA, Inc. 2011. “PJM Empirical Analysis of Demand Response Baseline Methods White Paper.” 

PJM Load Management Task Force. 
 
Kiliccote, Sila, Mary Ann Piette, Johanna Mathieu, Kristen Parrish. 2010. “Findings from Seven 

Years of Field Performance Data for Automated Demand Response in Commercial Buildings.” 
Proceedings of the 2010 ACEEE Summer Study on Energy Efficiency in Buildings. LBNL report number: 
LBNL-3643E. 

 
Mathieu, Johanna L., Phillip Price, Sila Kiliccote, Mary Ann Piette. 2011. “Quantifying changes in 

building electricity use, with application to Demand Response.” IEEE Transactions on Smart Grid 2:507- 
518. 

 
Price, Phillip, Nathan Addy, Sila Kiliccote. 2015. “Predictability and Persistence of Demand 

Response Load Shed in Buildings.” Lawrence Berkeley National Laboratory. LBNL report number: LBNL-
187399. 

Xenergy, Inc. 2002. “Protocol Development for Demand Response Calculation: Draft Findings and 
Recommendations.” California Energy Commission. http://www.calmac.org/publications/2002-08-



2022 International Energy Program Evaluation Conference, San Diego, CA 

02_XENERGY_REPORT.pdf.  


	Seeing the (Short-Term) Future: Assessment of Demand Response M&V Baseline Methods
	Eliot Crowe, Jessica Granderson, Samuel Fernandes,
	Lawrence Berkeley National Lab, Berkeley, CA
	Mrinalini Sharma, David Jump, Devan Johnson,
	kW Engineering, Oakland, CA
	ABSTRACT
	Demand response (DR) programs are becoming increasingly important for utilities looking to avoid system load constraints. In anticipation of extreme grid demand, DR programs offer incentives for customers to reduce load within a time window on a speci...
	The most common methods for quantifying building-level load reduction during DR events rely on simple averaging algorithms using hourly load and temperature data from the days preceding the DR event to create a counterfactual baseline. Regression-base...
	This paper summarizes the development and application of a method to compare DR baseline prediction accuracy of regression-based and averaging algorithms. We tested variants of three baseline modeling approaches using a data set of thousands of hypoth...
	Introduction
	Background
	Literature Review
	Study Overview
	Method
	Data Preparation
	Peak Prediction Algorithms
	Assessment Metrics
	Results
	Conclusions
	Acknowledgements
	References
	Xenergy, Inc. 2002. “Protocol Development for Demand Response Calculation: Draft Findings and Recommendations.” California Energy Commission. http://www.calmac.org/publications/2002-08-02_XENERGY_REPORT.pdf.

