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ABSTRACT 

There is often a substantial gulf between energy savings estimates based on engineering calculations and 
those based on empirical analysis of energy consumption data. Engineering approaches typically involve applying 
algorithms or building simulations that model energy consumption under different conditions (premise types, 
climate zones, etc.) to estimate savings after certain efficiency measures are installed. By contrast, consumption 
data-based approaches involve whole-premise analysis using utility metering data. With the increasing focus on 
measuring whole premise energy savings performance using Normalized Metered Consumption (NMEC), a new 
approach that integrates engineering and meter-based methods will reduce the risk for NMEC efforts by allowing 
for measure-level results and support consistent estimates across these central approaches.    

This paper presents findings from a recent evaluation of multiple residential HVAC measures. The analysis 
integrates engineering and consumption methods and uses statistically adjusted engineering (SAE) models1 that 
use a priori savings estimates as inputs to disaggregate whole-home savings into estimates of measure-level 
savings. In the study, site-specific estimates based on engineering simulation models are used as a priori inputs in 
place of ex-ante deemed measure savings estimates. The resulting analysis produces both whole-premise savings 
estimates and an allocation of those estimates across the delivered measures and offers evaluators insights for 
conducting similar analyses.  

Background and Introduction 

This paper is based on data from an impact evaluation2 in which we studied the electricity3 consumption 
effect of large-scale deliveries of multiple residential HVAC measures by four California program administrators 
(PAs) in 2018.4 Across the 4 PAs, 14 programs delivered the measures to a large number of single-family, 
multifamily, and mobile homes in different climate zones. Some of the programs targeted specific residential 
population segments including hard-to-reach mobile home residents and multifamily buildings, while others were 
open to all residential customers. Participating low-income households received program measures through a 
direct install delivery mechanism at no cost.  

  

 
1 State and Local Energy Efficiency Action Network (2012) provides a definition of SAE models. 
2 DNV (2020a).  
3 Since the intent of the paper is to illustrate the methods we used to estimate measure savings when multiple measures are installed by 
programs, we present findings based on electricity data to conserve space. Results based on gas data are qualitatively similar. 
4 The four PAs include Pacific Gas and Electric Company (PG&E), Southern California Edison (SCE), Southern California Gas (SCG), and San 
Diego Gas and Electric Company (SDG&E). 
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Table 1 provides a summary of the number and claimed savings of the HVAC measures the programs 
installed. The PAs claimed that the installed measures delivered total electric savings of 53 million kWh. Smart 
thermostats made up the bulk of the total measure electric installations (50%) and claimed savings. Fan controls 
and refrigerant charge adjustment (RCA) were the next most frequently installed measures and fan controls 
represented the second highest measure in terms of claimed savings.  

Table 1. 2018 direct install programs residential HVAC installations and electric savings claims by measure 

Measure Group 
Total Claimed kWh 

Savings 
Number of Electric 

Installations 
% Electric 

Installations 
Condenser Coil Cleaning 758,231 28,367 13% 
Duct Testing and Sealing 1,694,527 8,592 4% 
Fan Controls 11,183,423 32,991 15% 
Fan Motor Replacement 5,648,120 13,916 6% 
Refrigerant charge adjustment 3,597,868 23,018 10% 
Smart Thermostat 30,924,701 114,626 52% 
Total 53,806,870 221,510 100% 

The direct install programs delivered measures that varied by dwelling type with multifamily homes 
receiving mostly smart thermostats5 and limited proportions of other measures (Table 2). Single-family homes, on 
the other hand, received coil cleaning, control fan, and RCA measures most frequently, followed by smart 
thermostats. Mobile homes received smart thermostat measures most frequently, followed by RCA and duct 
sealing, and received the latter measure more frequently than any other premise type.  

Table 2. 2018 percent homes with electric saving measures by dwelling type  

Dwelling Type 
Coil 

Cleaning 
Duct 

Sealing 
Fan 

Control 
Fan 

Motor RCA 
Smart 

Thermostat Lighting 

Smart 
Power 
Strip Households 

Mobile Home 29% 43% 39% 25% 44% 66% 11% 0% 4,046 
Multifamily 5% 0% 14% 5% 2% 95% 9% 0% 21,064 
Single Family 75% 9% 69% 28% 59% 45% 21% 11% 17,742 
Overall 36% 8% 39% 16% 30% 72% 14% 4% 42,852 

The programs also installed different combinations of measures across participating households, most of 
which included smart thermostats. As an indication of the combinations of measures delivered by the direct install 
programs and the variation by dwelling type, Figure 1 shows the fraction of other measures installed in homes 
that received a smart thermostat.  As Table 2 indicates, smart thermostats were installed in 66% of mobile homes, 
95% of multifamily, and 45% of single-family homes. 

 
5 In a previous study, we had examined the energy consumption effect of smart thermostats delivered through rebate programs, where 
they were largely the only measure installed. See DNV (2020b).  With only a single measure installed, whole-home energy use changes 
provide energy savings estimates for smart thermostats. By contrast, when multiple measures are installed, such as with direct install 
programs that we are examining in this paper, whole-home savings require an additional approach to estimate the contributions of each 
measure to the overall savings.   
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Figure 1. Frequency of direct install programs electric measures installed with smart thermostats by dwelling type 

Data 

We used the following sources of data for the evaluation: 

 Tracking data: We sourced information about program participation from tracking data that the PAs filed 
with the CPUC in the California Energy Data and Reporting System (CEDARS).  

 Energy use data: energy consumption data were obtained from the PAs to analyze energy use changes 
related to the use of the HVAC measures. 

 Customer data: Supplementary information related to demographics and building characteristics for both 
participating and non-participating customers were sourced from customer information tables obtained 
from the PAs. 

 Weather data: We sourced weather data from the National Oceanic and Atmospheric Administration 
(NOAA) and climate zone 2018 reference temperature files (CZ2018) to include in regression models to 
account for weather sensitivity.6 CZ2018 provides typical meteorological year (TMY) weather data for 
select California weather stations that are useful for long-term weather normalization. The study also 
used climate zone information available by zip code from the CEC.7 

We obtained consumption data from the PAs for electricity at multiple levels of granularity: billing month, 
daily, and hourly. Billing data were primarily used as a means of identifying customers who did not get any 
program-sponsored measures (non-participants) and whose energy use patterns could help inform change in 
energy consumption in the absence of the program. Hourly and daily electric data served to fine-tune the selection 
of matched comparison non-participants and served as the basis for site-level modeling.  

We screened out customers with onsite solar from the analysis since we did not have access to their onsite 
solar production and, hence, did not know the full amount of electricity they used. We also excluded customers 
without at least 90% of daily electricity consumption pre-and post-installation in the analysis.8    

Table 3 presents electric participant data attrition and the number of customers in the study. The table 
indicates starting household counts from the tracking data considered for use in the study; the number of 
customers without onsite solar and with daily data available for matching, customers with AMI data and 2018 

 
6 National Oceanic and Atmospheric Administration Hourly Weather Data; California Energy Commission Title 24. 
https://www.energy.ca.gov/title24/; http://www.calmac.org/weather.asp.  
7 https://ww2.energy.ca.gov/maps/renewable/building_climate_zones.html  
8 These energy consumption data requirements are in line with CalTrack recommendations. 
http://docs.caltrack.org/en/latest/methods.html#section-2-data-management  
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installation dates, and finally customers with AMI data with the requisite pre-and post-data of at least 328 days 
of data available for the analysis.  

Table 3. Electric customer data attrition and counts used in the analysis by PA 

Participant Data Attrition 
PG&E 
Electric 

SCE 
Electric 

SDG&E 
Electric 

Customers with measures of interest in the 2018 tracking data 27,759 70,281 2,238 
Customers for whom data was requested 25,071 69,055 2,033 
Customers for whom some data was received 21,760 68,823 2,005 
Customers with sufficient pre- and post-period data 13,715 28,948 1,151 
Customers without onsite solar and the requisite data for second round matching 13,473 28,727 1,130 
Customers with relevant and sufficient data used in the final analysis 13,473 28,727 6359 

Methodology 

We detail approaches we used to estimate savings per household and the disaggregation of these 
estimates into measure savings in this section. Such disaggregation allows us to obtain savings estimates per 
installed HVAC measure. The disaggregation method we used is a refinement of standard disaggregation methods 
that are generally used for this purpose. (Agnew and Goldberg, 2017) 

Whole-home Savings 

Consumption data analysis formed the foundation of our approach to estimate energy use savings of the 
multiple residential HVAC measures delivered by the 2018 PA programs discussed earlier. We used all data for 
each dwelling type from the PAs to estimate a single and consistent savings per household a year post-installation, 
2018 through 2019.  

The consumption data analysis involved a two-stage modeling process that combined variable degree-day 
PRISM-inspired,10 site-level models with a matched comparison group, difference-in-difference (DID) framework. 
This is a well-established and accepted methodology that is appropriate for the evaluation of energy changes at 
the home level after an energy efficiency intervention. (Agnew and Goldberg, 2017) Moreover, the modeling 
approach is closely related to all other forms of program analysis that use energy consumption data including 
time-series, cross-section approaches. It is also consistent with CalTRACK’s recent effort to develop agreed-upon 
steps for the site-level modeling portion of the analysis.11  

In the first stage, we fit site-level cooling and heating degree models using daily energy consumption pre-
and post-installation data separately and calculated normalized annual consumption (NAC). This step puts energy 
consumption on equal weather footing and isolates the effect of the intervention from weather effects.  

In the second stage, we used a quasi-experimental method, the best and only option in the absence of a 
randomized experimental design, to control for non-program-related changes and estimate savings on a 
difference-in-difference (DID) basis.12 The DID approach relies on a comparison group to control for non-program, 

 
9 The notable drop in SDG&E electric participant data is due to the removal of accounts with no electric claims. 
10 Princeton Scorekeeping Method or PRISM is a software tool for estimating energy savings from billing data. 
11 CalTRACK specifies a set of empirically tested methods to standardize the way normalized meter-based changes in energy consumption 
are measured and reported. http://www.caltrack.org  
12 This approach involved selecting non-participants that are similar to participants along with relevant observable characteristics using 
matching. Matched comparison non-participants or groups were selected in two phases. In phase one, we used monthly billing data to 
identify 10 comparison candidates and, in phase two, we used interval data to fine-tune the match and select one comparison home for 
each participant. Details of the matching approach used are provided in DNV (2021).  
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exogenous change. It assumes that a comparison group is a reasonable proxy for the counterfactual of the 
participant group.  

In the DID model, we regressed NAC on simulation-based percent savings of each home’s measure bundle. 
The model also included a general treatment term as a predictor of pre-post energy use change. Fitted values that 
combine the estimated model coefficients and percent total simulated savings for each home were used to derive 
whole-home savings by dwelling type.  

Decomposition of Whole-home Savings 

Where multiple measures are installed, consumption data analysis can most accurately provide estimates 
of whole-home savings that occur due to the combination of all the installed measures. The DID model provides 
average whole-home savings by dwelling type, which is expected to vary depending on which measures were 
installed. We used multi-measure dummy and statistically adjusted engineering (SAE) models to decompose these 
savings to measure-specific savings for homes that received the HVAC measures through the direct install 
programs.  

The common multi-measure dummy model (common dummy model) provides average measure savings 
estimates across the different households that only considers the presence of each measure at each participating 
household. The model is specified to include binary variables that indicate the presence or absence of each 
measure at each participating household and has the following specification: 

Δ𝑁𝐴𝐶௜ =  𝛼଴ + ෍ 𝛽௞
௞

𝐼௞௜ + 𝜀௜ 

where:  

Δ𝑁𝐴𝐶௜ = change in NAC (normalized annual consumption) for household 𝑖, defined as pre-NAC – post-
NAC. 
𝛼଴ = non-program-related change. 
𝐼௞௜ = 0/1 dummy variable, equal to 1 if household 𝑖 received measure 𝑘, 0 if household 𝑖 is in the 
comparison group and/or did not receive measure 𝑘.  
𝛽௞  = estimate of mean savings per participant who received measure 𝑘. 
𝜀௜  = error term. 

A more refined approach considers variations in measure savings (for instance, by household type and 
climate zone) that are possible and can be used to inform model savings estimates. In addition to binary variables 
that capture the presence of measures at participating households, this approach incorporates ex-ante or other 
ex-post (collectively a priori) measure savings estimates for each measure that vary based on installation 
conditions to obtain more informed measure savings estimates. This is the composite SAE model and is specified 
as:13 

Δ𝑁𝐴𝐶௜ =  𝛼଴ + ෍ 𝛽௞
௞

𝐼௞௜ + ෍ 𝛾௞
௞

𝐸௞௜ + 𝜀௜ 

The terms Δ𝑁𝐴𝐶௜, 𝐼௞௜ , 𝛼଴,  and 𝜀௜ are as defined above. The term 𝐸௞௜ signifies a priori savings of measure 𝑘 
installed at household 𝑖. We provide a discussion of the a priori savings considered and used in our study below.  

 
13 A simpler SAE form that omits the participation dummy variable (the common SAE model) has the nominal appeal of the coefficient 
𝛽௞  being interpreted as the “realization rate,” the ratio of realized to tracking savings. However, inclusion of the tracking estimate 
without the corresponding dummy variable can lead to understated estimates of savings due to errors from omitted variables bias 
(Agnew and Goldberg, 2017). 
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In the composite SAE model, the coefficient estimates of 𝛾௞ are adjustment factors of a priori measure 
savings, akin to a realization rate, and the treatment dummy coefficient, 𝛽௞, are estimates of the average change 
in NAC across customers with each respective measure. This model allows for the possibility that empirical savings 
are correlated with a priori savings estimates but are not strictly proportional to it. Total savings for each measure 
installed in different households for this model is calculated using:  

𝑆௞ = 𝛽መ௞ ෍ 𝐼௜
௜

+ 𝛾ො௞ ෍ 𝐸௜
௜

 

Unit savings per measure is then calculated as this total, divided by the number of customers that installed the 
measure. 

The size of participant households and the associated energy consumption vary substantially. In order to 
avoid the savings estimates from being driven by large homes with high energy consumption, we also estimated 
a third SAE model that took initial household energy consumption into account. In this model, we normalized the 
change in NAC by the pre-installation NAC (which is the percent change in NAC) and a priori measure savings by 
each home’s initial energy consumption (which are the percent a priori measure savings). This refined approach 
(the scaled SAE model), thus, takes the size of each participating household into consideration when decomposing 
whole-home savings into measure savings. 

The scaled SAE model specifies percent change in NAC as a function of binary variables that reflect the 
presence of installed measures and a priori measure savings as a percent of initial energy consumption for each 
participating household. This model is specified as: 

%Δ𝑁𝐴𝐶௜ =  𝛼଴ + ෍ 𝛽௞
௞

𝐼௞௜ + ෍ 𝛾௞
௞

%𝐸௞௜ + 𝜀௜  

where: 

%Δ𝑁𝐴𝐶௜ = percent change in NAC for individual 𝑖, defined as (preNAC – postNAC)/preNAC. 
%𝐸௞௜ = a priori percent savings of measure 𝑘, for the climate zone and building type of household 𝑖 that 
received the measure, where percent measure savings are measured as a priori measure savings relative 
to consumption of household 𝑖.   
𝛾௞ = an adjustment factor of measure 𝑘’𝑠 a priori percent savings.  
𝛼଴ = non-program related percent change. 
𝛽௞  = estimate of mean percent savings per participant who received measure 𝑘. 
𝜀௜  = error term. 

Total savings for measure 𝑘 for the scaled SAE model is given by:  

𝑆௞ = ෍ 𝑃𝑟𝑒𝑁𝐴𝐶௜
௜

∗ (𝛽መ௞𝐼௞௜ + 𝛾ො௞%𝐸௞௜) 

where the summation is over all customers with the measure. Unit savings per measure then is this estimated 
total savings divided by the number of customers with the measure.  

In this study, we considered two sources of a priori measure savings that are used in the composite and 
scaled SAE models (defined above). One source was ex-ante deemed measure savings data, which provides unit 
savings for each measure that program providers use for their claims. These values are derived from engineering 
calculations or simulations that use various assumptions to derive the unit savings for each measure installed 
under different circumstances, including location and dwelling type. The second source was ex-post engineering 
simulation results we conducted using key measure inputs from recent evaluations to derive savings estimates for 
measures installed individually and simultaneously.  
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We based our scaled SAE models on ex-post engineering simulated values rather than ex-ante deemed 
measure savings estimates in order to use the most consistent and accurate dwelling type and climate zone-level 
estimates of savings as a percent of baseline consumption. We conducted the simulation using DEER prototypes 
in eQUEST, a well-established simulation engine, which incorporated the best data available from previous studies 
and evaluation findings. We developed savings estimates by building type and climate zone for each of the 
residential HVAC measures under study for the combinations that were installed by the programs. 

For instance, some households might have implemented duct sealing and testing, refrigeration charge 
adjustment, and fan control measures; others might have implemented only duct sealing and testing, and still, 
others might have implemented other measure combinations. For each of these combinations, we ran a “last-in” 
simulation to determine the incremental savings contribution of that measure to that combination. Therefore, 
this approach attempts to account for interactive effects of the multiple HVAC measures and provides a more 
realistic estimate of the marginal contribution of each measure in the combination. For installed measures where 
engineering simulation estimates were not developed (lighting and smart power strips), we used ex-ante deemed 
savings in the SAE models.  

Results 

We will first discuss whole-home electric savings before focusing on the decomposition of these savings 
into measure savings. 

Whole-home Savings 

The starting point for our evaluation of direct install programs was estimating weather-normalized energy 
consumption changes among participant homes that received direct install measures as compared to similar 
homes that had no such intervention. We find that average electric savings per home, which includes the savings 
for all technologies installed at the same time, are 115 kWh, 70 kWh, and 132 kWh for mobile homes, multifamily 
homes, and single-family homes respectively (see Figure 2). The figure also provides claimed whole-home savings 
for each dwelling type, calculated by dividing total claimed electric savings by the total number of participating 
sites.  

 

Figure 2. Average claimed and estimated electric whole-home savings from 2018 residential from multi-measure 
installations 

Whole-home claimed electric savings were highest for single-family homes that installed measures with 
relatively high claimed savings (e.g., fan motor replacements and fan controls). The next highest claimed savings 
were for mobile homes, and for similar reasons. Moreover, the energy consumption of single-family homes is 
generally high, which provides greater opportunities for energy savings. Multifamily homes largely installed smart 
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thermostats alone and had the lowest claimed whole-home savings. The actual savings achieved per home roughly 
followed the patterns of claimed or reported savings, although the realization rates (estimated savings as a 
fraction of claimed savings) were 30% for multifamily homes and about 20-25% for single-family and mobile 
homes.  

Engineering Simulation Estimates   

Values from engineering simulation models formed an important foundation of both the models used to 
estimate whole-home energy use changes and the decomposition of these changes into measure-level estimates. 
The engineering estimates used a simulation engine to produce prototype models based on certain parameters 
that reflect multiple scenarios, including dwelling type, climate zone, and retrofits. Figure 3 provides the average 
estimated percent electric savings for installed HVAC measures based on engineering simulation models and PA-
provided tracking data for the non-HVAC measures by dwelling type. In the figure, DMO signifies mobile homes, 
MFM multifamily homes, and SFM single-family homes.  

 

Figure 3. Average simulated percent electric savings per measure for 2018 direct install programs 

Decomposition of Whole-home Savings 

We decomposed whole-home savings into measure-level savings using each of the three second-stage 
models outlined above. We provide our findings from these models including measure savings estimates and their 
statistical significance, the number of households used in the models and the average baseline consumption 
among the homes in this section.14 

Table 4 provides the results from full models that feature all installed measures by dwelling type. The 
measure savings estimates are qualitatively similar across all the models for each dwelling type. While model 
estimates from the common dummy model reflect average measure savings across all climate zones and 
installations for each dwelling type, the estimates from the other two methods are informed by a priori variation 
in measure savings based on location and housing type. In addition, measure savings estimates from the third 
(scaled SAE) model also reflect variation in scale or energy consumption that exists across homes receiving the 
measures. These refinements were undertaken to produce more realistic and better-determined model estimates 
and to overcome any limitations that may arise from the common dummy model.    

 
14 The number of households used in models and average baseline consumption vary among the models slightly due to small differences 
in the number of outliers excluded from model runs. DID models were used to determine and exclude outliers based on statistical tests; 
DID values exceeding pre-defined DFITS or studentized residual limits were considered outliers and excluded from model estimates 
presented in this paper. No more than 2-4% of observations were excluded based on such tests. 
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Table 4. Household counts, baseline use (kWh), and estimated whole-home and measure savings (kWh per 
measure) from full SAE models 

Variables 
Common Dummy Model Composite SAE Model Scaled SAE Model 

DMO MFM SFM DMO MFM SFM DMO MFM SFM 
Households 
Counts 

3,866 20,928 17,425 3,866 20,928 17,425 3,869 20,803 17,604 

Baseline Use 6,280 4,858 8,228 6,280 4,858 8,228 6,360 4,905 8,354 

Whole-home 107 76 111 107 76 111 109 78 129 

Coil cleaning (CC) 84 54 **-60 *106 462 **-86 ***158 39 -33 

Duct Sealing **83   ***123 **82   **112 29   ***166 

Fan Control (FC) -24 -16 ***114 -34 10 ***121 -20 -5 ***93 

Fan Motors ***130 ***114 ***123 ***129 **565 69 ***172 **68 ***139 

Lighting 62 ***110 ***115 61 ***109 31 15 *8 ***115 
Smart Power 
Strips (SPS)      **-66     -39     **-58 

RCA -16 -57 28 -37 -14 58 *-87 -5 20 
Smart 
Thermostat (SCT) 

38 ***61 -30 *45 ***39 ***-78 **62 ***62 -16 

*** p <0.01; ** p <0.05; * p < 0.1     

Results in the table indicate relatively consistent savings estimates across the models, particularly for 
those that are statistically significant. The results also show that savings estimates for some measures are 
statistically insignificant, which is plausible. However, there are some negative and statistically significant measure 
savings estimates, which are not plausible, and suggest the presence of multicollinearity. The composite and 
enhanced models do not appear to provide additional information to overcome these challenges.  

Looking at the overlap of installed measures could explain these outcomes.15 We use a heatmap of 
installed measure overlaps to illustrate this point. Figure 4 provides a heatmap of all measures installed among 
single-family homes; similar figures for multifamily and mobile homes are not presented to conserve space. Each 
row in the heatmap provides the proportion with which a particular measure (measure x) coincides with the 
remaining measures. For example, the smart thermostat row indicates that 74% of smart thermostats were 
installed with coil cleaning while the coil cleaning row indicates that 49% of coil cleanings were done in premises 
with smart thermostat installations.  

 
15 We should note that the overlap in measure installations (and the resulting multicollinearity) alone do not necessarily explain the 
inconsistent and implausible measure savings estimates. For example, in cases where there are strong interactive effects, including 
overlapping functions between or among the measures, the estimated measure savings could be imprecise and, in some instances, even 
negative. For example, one of the patterns to emerge from these models is the interactive effects between fan controls and smart 
thermostats, two measures that perform some similar functions. Savings estimates for fan controls and smart thermostats have opposite 
signs across all models and dwelling types reflecting this overlapping function: delaying fan turn-off. Similar to what fan controls do, 
smart thermostats use the HVAC fan to spread the cool air remaining in the coils through a home after switching off the air conditioner 
compressor. 
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Figure 4. Single-family heatmap of measure installation overlaps  

The figure indicates that smart thermostats were installed most commonly with fan controls (for 69% of 
homes), RCA (for 73% of homes) and coil cleaning (for 74% of homes). The extensive overlap of smart thermostat 
installations with these three measures explains the common dummy model's inability to provide a well-defined 
marginal savings estimate for this measure in the single-family model.16  

Similarly, the coil cleaning measure overlaps with RCA and fan controls measures in 76% and 83% of single-
family home installations, respectively. High measure installations overlaps could also explain the common 
dummy model's inability to assign meaningful marginal savings estimates to the coil cleaning and RCA measures, 
which is exacerbated by relatively low overall whole-home savings. 

The additional information that the SAE models incorporate is used to overcome the noted limitation 
faced by the common dummy model by providing an external source of measure savings variations that can be 
used to inform the decomposition of whole-home savings into measure savings. However, despite the extra 
information incorporated by the two SAE models, the challenges observed for the common dummy model 
estimates are still evident. While the measure savings estimates are more significant, the negative estimates that 
plague the common dummy models persist. Thus, the extra information embedded within these models does not 
appear to overcome the multicollinearity problems caused by the multi-measure installations noted above. 

However, these models do hold some promise over the common dummy model that is worth investigating 
further in future studies. In particular, the scaled SAE model appears to have the ability to provide more 
reasonable savings estimates by scaling engineering simulated measure savings used to decompose whole-home 
savings. For example, multifamily sites that received relatively few coil cleaning and fan motors (see Table 2) have 
outsized savings estimates for these measures in the composite SAE model, reflecting the fact that almost all 
measures were installed with smart thermostats in these homes and the model is based on a priori savings 
estimates that only vary by climate zone. The savings estimates for these two measures, however, are more 
reasonable in the scaled SEA model where a priori savings used to inform model estimates are calibrated to reflect 
each participant’s energy use, which provides more variation. The latter model shows the improvement in savings 
estimates this approach makes possible.  

 
16 Comparatively, smart thermostats do not coincide with any other measure more than in 7% of multifamily homes. 
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Given the challenges that each of the full models had in decomposing whole-home savings outlined above, 
we bundled measures that appeared to be correlated and estimated additional (reduced) models using the scaled 
SAE modeling approach. Table 5 provides savings estimates that are based on various measure bundles. 

Table 5. Household counts, baseline use (kWh), and estimated measure savings (kWh per measure) from 
reduced SAE models 

Scaled SAE Reduced Model 1 Scaled SAE Reduced Model 2 Scaled SAE Reduced Model 3 
Variables DMO MFM SFM DMO MFM SFM DMO MFM SFM 

Household 
counts 3,859 20,775 17,602 3,859 20,775 17,602 3,859 20,775 17,602 
Baseline Use  6,350 4,895 8,354 6,350 4,895 8,354 6,350 4,895 8,354 
CC, RCA **66 37 -30       
CC, RCA, FC    14 -1 ***59 *40 ***26 ***49 
Duct Sealing  20  ***158 37   171 33   ***161 
FC  -6              
Fan Motors ***159 **67 ***155 ***153 ***86 ***148 ***149 **53 ***155 
Lighting, SPS ***67 17 ***52 **61 17 ***56 ***63 17 ***53 
SCT, FC  9  ***78              
SCT  ***62  **62 ***62 -17       

*** p <0.01; ** p <0.05; * p < 0.1   

In the first reduced model, we bundled measures that were most commonly installed together. The 
bundling did not resolve the problem of negative savings estimates that still appeared to reflect the effect of 
remaining measure overlaps. Additional bundling in the second reduced model did not provide much 
improvement. The third reduced model provided plausibly signed and significant savings estimates for the 
specified bundles.  

However, it was not clear how these estimates could be used to evaluate installed measures given that 
such bundles were not always installed together. The savings for the estimated bundles still required 
disaggregation of the savings from each bundle into individual measure savings in order to use these values in the 
calculation of overall program savings. In the face of these difficulties, we undertook a different approach to 
disaggregate whole-home savings that we discuss below. 

Alternative Decomposition of Whole-home Savings 

Given the foregoing limitations, instead of estimating a scaled SAE model that is specified to include 
separate terms for all the installed measures, we estimated a collapsed scaled SAE model based on the sum of the 
engineering simulation measure savings of all the installed measures as a percent energy consumption for each 
site. In this model, the percent change in NAC is explained by the informed engineering percent savings of the 
total measure bundle installed at each site along with a treatment dummy, which accounts for constant savings 
associated with the program installations. This collapsed scaled SAE model is specified as: 

%Δ𝑁𝐴𝐶௜ =  𝛼଴ + 𝛽𝐼௜ +  γ%𝐸௜ + 𝜀௜  

where:  

%Δ𝑁𝐴𝐶௜ is percent change in NAC for individual 𝑖, defined as (pre-NAC – post-NAC)/pre-NAC. 
%𝐸௜ is savings of the total measure bundle that participant 𝑖 received estimated by the engineering model 
as a percent of typical energy consumption. 
𝐼௜ is a treatment indicator variable, which is 1 if 𝑖 is a participant, 0 otherwise.  
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In this model, the coefficient associated with total engineering percent savings estimate, γ, is an adjustment factor 
of these savings and the treatment dummy coefficient, 𝛽, is an estimate of the constant percent change in NAC 
across customers with any measure bundle. 

Total savings for a home receiving a given measure bundle is estimated using:  

𝑆௜ = (𝛽መ + 𝛾ො%𝐸) ∗ 𝑃𝑟𝑒𝑁𝐴𝐶௜ 

These estimated savings are converted into measure savings for each participant 𝑖 based on the relative 
engineering savings proportions of each measure for that participant. Total measure savings are averages of the 
measure savings across all participants that received the measure. 

Table 6 provides measure savings estimates based on the disaggregation of whole-home savings estimates 
using engineering savings proportions by dwelling type. The table also provides the number of homes where data 
were included in the models and the average annual baseline electricity consumption. 

Table 6. Disaggregation of whole-home savings using engineering savings proportions 

Variables DMO MFM SFM 
Household counts 3,976 20,813 17,514 
Baseline Consumption (kWh) 6,290 4,878 8,349 
Coil cleaning  30 32 32 
Duct Sealing 93   100 
Fan Controls 57 66 71 
Fan Motors 94 69 121 
Lighting 14 26 14 
Smart Power Strips     28 
RCA 6 5 5 
Smart Thermostat 24 56 15 
Whole-home savings 115 70 132 

 p < 0.01 for all savings estimates except lighting for mobile homes 

A comparison of measure savings estimates for multifamily home installations illustrates our attempts to 
decompose whole-home savings using different statistical approaches.17 The bar chart highlights both the promise 
and limitations of our attempts at statistical decomposition of whole-home savings and the challenges of 
estimating measure savings from multi-installation projects. The two (SAE) statistical approaches provided savings 
estimates for some measures (coil cleaning and smart thermostats) that are higher than those apportioned using 
engineering savings proportions. They also resulted in implausible negative savings estimates for other measures 
(fan controls and RCA) partly due to considerable overlap in installations of these measures.    

 
17 Estimates for single-family and mobile homes that provide similar insights are not presented here to conserve space. 
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Figure 5. Comparison of measure savings estimates for multifamily installations 

Concluding Remarks 

We used data from California direct install programs that delivered a large number of HVAC measures to 
single-family, multifamily, and mobile home participants across the state to estimate individual measure savings. 
The installation of multiple measures in different combinations poses challenges for estimating individual measure 
savings, particularly because of interactive and overlapping measure effects and relatively low whole-home 
savings.  

We used a modified form of a statistically-adjusted engineering model (the scaled SAE model) as an 
improvement over existing approaches to overcome these challenges as well as those posed by variations in home 
size. In particular, this approach was meant to provide estimates that are better informed than those obtained 
from the common dummy variable and composite SAE models. The common dummy variable model provides 
average measure savings across all installation locations (climate zones) and settings (housing type and 
consumption levels) while the composite SAE models incorporate a priori savings estimates that reflect variations 
along certain dimensions, such as housing type and location.  

The scaled SAE model extends this approach one more step by incorporating varying measure savings 
relative to consumption, which also vary by home size, and attempts to weight measure savings so they can be 
better estimated relative to each other. It moves away from the naïve a priori used by the composite SAE model 
to more informed a priori savings estimates that reflect variations in savings across customers. Each step from the 
common dummy variable model to the scaled SAE model introduces more customer-specific data and uses 
additional sources of savings variation in an attempt to produce better measure savings estimates.  

Obtaining separate realization rates by measure has always been a challenge. Informing consumption data 
analysis is always useful and the current application that uses these estimates scaled by home size holds promise 
as it mitigates the effects of variation of home size on savings estimates.  

The efforts we undertook to disaggregate whole-home savings suggest that it could be useful to assess 
measure installation overlaps prior to estimating measure-specific savings estimates. Such analysis would reveal 
the extent of overlap in installed measures and suggest ways to combine either similar or highly overlapping 
measures prior to attempting to disaggregate whole-home savings into measure-specific savings. 
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