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ABSTRACT 

Does it matter if your demand response (DR) event starts at 16:10 or 16:20? Which time is likely 
to yield more kW savings? In this paper, we explore what granular data can say about optimizing DR. For 
utilities incorporating smart meters into their residential infrastructure, the ability to utilize 15-minute 
interval data for measurement and verification (M&V) analyses provides the unique opportunity to 
untangle high-resolution demand reduction (kW) differences across various event start times. If those 
same utilities run DR events in phases – with start times for various subgroups staggered by 10-minute 
intervals, for example – the M&V process can easily yield a detailed comparison of the effectiveness of 
DR events triggered at a variety of slightly differing times.   

By drawing on M&V findings from four different smart and programmable-communicating 
thermostat models over two DR seasons (87 DR events), we assessed the relative efficacy of an assortment 
of DR event start times. Herein we discuss the value of triggering events at a variety of times, how these 
trigger times compare to local peak demand, and compare the relative kW reductions from each start 
time for each device type to provide tangible guidance on when to trigger your DR events. Overall, the 
results indicated that events triggered one-hour prior to peak demand may achieve the highest demand 
reduction. 

Introduction 

A common method for mitigating periods of peak demand is the implementation of a direct load 
control program, in which a variety of thermostat types are remotely operated via radio, telephone, or 
internet connections. Through these programs utilities can trigger Demand Response (DR) Events during 
which thermostat setpoints at participating premises are shifted by several degrees for approximately one 
to three hours. These programs can be a particularly useful load-shifting strategy during the summer 
cooling season, as DR events can be an effective means of shifting the air conditioning load away from the 
peak demand period. However, during the approximately two-hour window of time after a DR event, the 
increased cooling load can be significant – anywhere from 5 to 20% higher than normal consumption at 
this time of day. This period, often referred to as “snapback”, can significantly impact the grid when 
enrollment is scaled-up (i.e., many tens of thousands of premises). Moreover, some implementation 
contractors run pre-cooling strategies that occur prior to DR events, during which thermostat set points 
may be decreased for one to two hours prior to the event’s start to maintain more comfortable conditions 
within the premise during the event itself. These pre-cooling strategies impact the grid in a similar way as 
snapback, causing a period of increased consumption as air conditioning systems work to cool spaces to 
lower-than-normal temperatures. 

One strategy for mitigating the effects of snapback and pre-cooling on the grid when DR programs 
have high participation is to avoid triggering DR events for an entire population simultaneously and to 
instead run events in phases staggered by 10-minute intervals over a period of one plus hours. While this 
may not decrease the total consumption of any given premise during either the snapback or pre-cooling 
windows, this method does tactically distribute the undesirable load impact of snapback and pre-cooling 
from the entire DR program across a broader period. In this paper, we leverage the implementation of 
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such a phased approach, along with the availability of advanced metering infrastructure (AMI) datasets 
from smart meters, to evaluate if there is an appreciable difference between the demand reduction 
achieved by events initiated at a variety of slightly offset times.  

Methodology 

The analysis methodology described herein was implemented over two program year evaluations 
to compile the data reviewed in this paper.  

Data Acquisition and Sampling 

AMI data was provided for demand response event analyses by the utility for about 75% of 
program participants. Since smart meters record premise energy consumption data per 15-minute 
interval, we summed these values in to convert to total hourly demand (kW). To qualify for inclusion in 
the analysis sample, premises needed to maintain enrollment throughout DR season and to not have 
participated in any other Demand Side Management program offerings that year. Additionally, the 
analysis sample was limited to premises with only one kind of demand response device installed. For 
example, if a premise had both a programmable-communicating thermostat (PCT) and a smart thermostat 
device installed, then it is excluded from the analysis. Conversely, a premise with two PCTs installed was 
retained for analysis.   

Event Data Cleaning 

For each event analysis, several additional data cleaning steps were performed to ensure accurate 
event evaluation. Since all devices provide a way for the customer to override a demand response 
curtailment event, any premises that may have overridden an event needed to be identified. Overrides 
are tracked through various data resources, all of which are provided by the utility and their implementers, 
and any premise that was found as having overridden event curtailment was removed from the event 
analysis for that day.  

Additionally, premises with non-responding devices—devices that do not act in response to the 
curtailment signal sent, potentially due to system outages or disruptions to internet connectivity— were 
identified and removed from the event day analysis. Two methods were used to ensure proper 
identification of non-responding devices and limit Type One errors – a cumulative time series evaluation 
that identifies a break in slope and a direct screening for a set percent reduction in consumption over the 
first event hour. Only premises that fail both tests were removed from the analysis.  

After cleaning the population of premises based on the above criteria, the event analyses included 
in this study incorporated a sample of approximately 45,000 single-family residential premises and 5,000 
multi-family residential premises on average per event. 

Determining the Event-Day Baseline 

Following data cleaning, the individual consumption time series for all premises were aggregated 
by device type, rate classification, and event phase to define distinct “subgroups” for analysis. This 
approach smoothed out the noise present in individual premise consumption patterns and served as a 
representative sample of the average household demand.  

The utility provided a list of over 62,000 randomly selected single-family premises and over 6,000 
randomly chosen multi-family premises for use as a control group for the analysis. Up to five control 
premises from this population were matched to each DR premise based on propensity score matching 
utilizing property characteristics such as location (zip code), square footage, and home age. Then for each 
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event, the matched pool of control premises was re-matched to each subgroup using a pseudo-clustering 
method based on total consumption in the seven preceding non-event weekdays. This method resulted 
in several matched control group premises per home participating in the DR event. 

The consumption time series from the selected control group premises were aggregated to create 
a baseline consumption time series for each subgroup. Even with these matching steps, there can still be 
a consistent difference between the event-day participant and control group time series that could lead 
to a bias in the difference of the two curves. To rectify any disparities, an event-day adjustment 
(𝛼𝛼𝑔𝑔(𝑡𝑡)) was made the average control group load (𝐿𝐿𝑔𝑔𝑐𝑐 (𝑡𝑡)):  

 
𝐿𝐿𝑔𝑔𝑐𝑐 (𝑡𝑡) → 𝐿𝐿𝑔𝑔𝑐𝑐 (𝑡𝑡) ⋅ 𝛼𝛼𝑔𝑔(𝑡𝑡) 

 
For devices with pre-cooling enabled, the adjustment factor was based on the mean of the ratios 

of the average treatment group load and the average control group load for the hour before pre-cooling 
began and the third hour after the event ended:  

 

𝛼𝛼𝑔𝑔(𝑡𝑡) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(
𝐿𝐿𝑔𝑔�𝑡𝑡𝑝𝑝𝑝𝑝𝑚𝑚�

𝐿𝐿𝑔𝑔𝐶𝐶�𝑡𝑡𝑝𝑝𝑝𝑝𝑚𝑚�
 ,
𝐿𝐿𝑔𝑔�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡�

𝐿𝐿𝑔𝑔𝐶𝐶�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡�
 ) 

 
For thermostats that do not include pre-cooling periods prior to the event, the adjustment factor 

was calculated as the ratio of the average treatment group load and the average control group load during 
the hour prior to the event:  
 

𝛼𝛼𝑔𝑔(𝑡𝑡) = 𝐿𝐿𝑔𝑔�𝑡𝑡𝑝𝑝𝑝𝑝𝑚𝑚�/𝐿𝐿𝑔𝑔𝐶𝐶(𝑡𝑡𝑝𝑝𝑝𝑝𝑚𝑚) 
 
An example load shape from a selected control group (Baseline) is plotted in Figure 1 alongside 

the event-day adjusted curve (NormBL) and the load shape from a treatment subgroup with pre-cooling 
enabled (Treatment) to provide a visual comparison.  
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Figure 1. Example Event Day Load Shape 

Energy savings related to the demand response event, which began at approximately 16:30 in the 
example provided above, is illustrated by the heavy consumption drop coinciding with that time and can 
be considered the area between the event-day adjusted curve and the treatment subgroup curve. 
Conversely, pre-cool and snapback energy consumption is represented by the sharp increases in 
consumption plotted by the treatment subgroup curve starting at approximately 15:00 and 19:00, 
respectively. Smart thermostat optimization algorithms can give the treatment subgroup load shape a 
shifted appearance but are very common. 

Well-illustrated in Figure 1 is also the local peak demand hour, which is commonly one hour before 
17:00 during the DR season (June – September). Peak demand hour was determined by ADM during a 
separate critical peak demand analysis completed for the utility. The DR events discussed in this study ran 
for two hours following the listed phase start times, aligning broadly with the system peak.  

Calculating Demand Reduction 

The demand reduction calculated for each subgroup is based on the average load differential for 
each hour of the DR event. The subgroup kW factor is the upper limit of a subgroup’s per-device load 
reduction capability and is determined by normalizing the maximum load reduction achieved during the 
event by the ratio of the number of devices per premise for the subgroup. In this paper, only the end-of-
line demand reductions are reviewed, and line losses are not included in the computation of the demand 
reduction achieved. 
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Weather Normalization 

To enable the direct comparison of event results over multiple DR seasons, an additional step of 
creating weather-normalized kW factors would be typically recommended. Weather data from the 
nearest local weather station in the American southwest was downloaded from the National Oceanic and 
Atmospheric Administration and used to calculate the average daily temperature and cooling degree days 
for each event day. The event-day cooling degree days were then used to normalize the calculated kW 
factor for each subgroup.  

However, as shown in Figure 2 below, there does not appear to be a strong correlation in demand 
reduction associated with temperature (the apparent increase in kW factor scatter with temperature is 
an artifact of having more data from hotter days). Therefore, we chose not to normalize the event kW 
factors to cooling degree days as this data processing step may only serve to blur variability between the 
demand reduction realized by various event phase start times.  

 

 
Figure 2. Event Day Temperature vs. kW Factor 

Results 

Mean kW factors attained across all thermostat devices for event phases starting between 16:00 
and 17:10 are presented in Table 1. The number of subgroup events included in the calculated mean 
values ranged from 302 to 472 analyses. While the mean kW factor determined for various start times 
varies by only 0.23 kW or less, a Kruskal-Wallis test p-value of << 0.05 indicates statistically significant 
variability in kW factor across start times. This variability is dampened in the weather-normalized kW 
factor dataset also presented in Table 1 for comparison.  
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Table 1. Mean kW Factor by Event Start Time 

Start Time1 Mean 
kW Factor 

Mean Weather 
Normalized kW Factor N 

16:00 1.27 0.06 438 
16:10 1.14 0.06 420 
16:20 1.10 0.05 416 
16:30 1.14 0.06 472 
16:40 1.18 0.06 472 
16:50 1.04 0.05 362 
17:00 1.22 0.06 392 
17:10 1.07 0.05 302 

 
To further explore any variability present in the data set, kW factors were disaggregated by both 

thermostat device type as well as by the utility’s rate classification. Among the four thermostat models 
reviewed in this study, there is considerable overlap in event performance across all phase times. As 
shown in Figure 3, box plots illustrating quartile statistics for each device type show very similar 
distributions of kW factor results for each event phase start time, though events triggered at 16:00 may 
be slightly more impactful with higher kW factors on average. Smart Thermostat B overall appears to 
perform the most consistently across all events, while Smart Thermostats A and C generate slightly more 
variable results. For the PCT thermostats, the inter-quartile range for event phase start times between 
16:00 and 16:50 are slightly higher and more variable than the same metric for events triggered later, 
however limited data is likely the primary driver for this apparent deviation as there were only a small 
number of events triggered for this device between 17:00 and 17:10 over the two DR seasons.  

Likewise, Figure 4 demonstrates a lack of distinct differences in demand reduction across the 
spread of event phase start times for both single-family and multi-family premises; however, there is also 
evidence in this disaggregation that event phases triggered for single-family premises at 16:00, one hour 
prior to peak demand, may yield slightly higher demand reduction. 

To explore the tendency of single-family homes indicating higher savings at 16:00 in more detail, 
Figure 5 disaggregates the results from single-family premises by device type. For all three smart 
thermostats installed in single-family premises, event phases triggered at 16:00 do tend to generate 
slightly higher demand reduction, although for PCT devices this distinction is not as pronounced. 
Additional Kruskal-Wallis analysis of variance between the mean kW factors across the various event 
phase start times for each device type installed in a single-family premise also indicate significant 
deviation in average demand reduction between various event phase start times for every smart 
thermostat (p < 0.05 in all cases) but not for PCT devices (p value of 0.22 when the three events triggered 
at 17:00 or later are removed from the sample). 

 
1 Additional event phases were triggered between 15:30 – 15:50 as well as between 17:20 – 18:00, however less 
than 40 events were triggered at any one of those phase times and therefore they are not included in this review. 
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Figure 3. Impact of Event Phase Start Time by Thermostat Device 

 

 
Figure 4. Impact of Event Phase Start Time by Rate Class   
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Figure 5. Impact of Event Phase Start Time by Device Type for Single Family Homes 

Discussion and Conclusions 

 The body of data presented in this study collectively revealed that over two demand response 
program years there were not significant differences in the demand reduction achieved in multi-family 
premises by load shifting events triggered across eight different 10-minute intervals in the hour preceding 
the system’s peak demand. However, events triggered over the same DR seasons in single-family homes 
with smart thermostat devices do indicate that demand reduction is slightly higher when the two-hour 
DR event is triggered one-hour prior to peak demand.  
 Overall, these findings can be viewed as encouraging for utilities interested in expanding their 
demand response programs. By distributing participating premises across a range of event start times, the 
impact of pre-cooling and snapback increased consumption for high-enrollment DR programs can be 
mitigated without causing a drastic variability to the demand reduction capabilities of the program. 
Though care must be taken when scheduling phased demand response events to avoid initiating either a 
pre-cooling or a snapback surge in consumption coincident with the system’s peak demand hour, with 
strategic planning, the utilization of phased demand response event start times can enable enhanced load 
control capabilities.  


	Demanding the Most from DR: How Evaluation Can Inform Residential Demand Response Optimization
	Alexandra Horne and Noah Fraser, ADM, Reno, NV
	Haixiao Huang, NV Energy, Las Vegas, NV
	ABSTRACT
	Introduction
	Methodology
	Data Acquisition and Sampling
	Event Data Cleaning
	Determining the Event-Day Baseline
	Calculating Demand Reduction
	Weather Normalization

	Results
	Discussion and Conclusions

