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ABSTRACT 

In recent years, extreme cold weather events have strained natural gas distribution systems 
across the Midwest, Northeast, and in Texas. In several cases, these weather conditions have contributed 
to or coincided with equipment failures leading to catastrophic service failures. These incidents have 
raised questions about the potential for gas demand flexibility and demand response (DR) programs to 
improve natural gas distribution resilience and reliability.  

During winter 2020/21, a large electric and natural gas distribution utility in the Midwest 
conducted a gas DR pilot program involving smart thermostat direct control treatments for residential 
and small commercial customers. This paper presents the results of the pilot impact evaluation.  

The limited temporal resolution of typical gas metering infrastructure raises challenges for 
measuring the impact of 2–4-hour DR events. To address this challenge, hourly consumption impacts were 
measured in heating system runtime minutes using thermostat telemetry data. We present a 
methodology for translating these heating minute impact estimates to units of gas consumption by 
estimating the effect of a heating system runtime minute on cubic feet of gas consumed in a second stage 
model.  

The study provides several new insights. It demonstrates the potential for gas demand response 
in a cold climate Midwest region, the efficacy of experimental and non-experimental methods for gas DR 
impact measurement, and it provides a solution for measuring gas DR program impacts with limited 
advanced gas metering infrastructure. 

Introduction 

Gas distribution utilities might consider conducting natural gas demand response for a variety of 
reasons. The most common are likely to defer infrastructure investment and increase reliability and 
resilience of the gas distribution system. Deferred infrastructure investment may reduce system costs and 
provide indirect climate and environmental benefits through avoided carbon lock-in (Sato, 2021). 

Theoretically, gas demand response that delivers reductions in gas consumption during peak 
hours can reduce the capacity required to serve customers on a distribution node. There are few studies 
that provide estimates of the capacity value of gas demand response. One study of Central Hudson’s 
service territory used a probabilistic demand forecasting approach to quantify the likelihood that gas 
demand response could help avoid a loss of pressure incident that could trigger a distribution capacity 
upgrade. The study found that on the most constrained distribution node, the capacity value from gas DR 
could be as great as $1,000/Ccf-year (Bode, 2020). Importantly, this value was found to vary dramatically 
within Central Hudson’s distribution network and was much lower for other distribution nodes. This 
suggests that the capacity benefits of gas DR are likely to be concentrated in distribution nodes that are 
experiencing growth or are otherwise operating near capacity limits.  

Related to but somewhat distinct from the capacity benefits, gas DR has the potential to increase 
the reliability and resilience of gas distribution service. Disruptions leading to loss of gas service are 
relatively rare; however, when they occur, they create serious threats to health and safety and are time 
consuming and costly to remediate. “The restoration of gas service involves an initial visit to each 
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individual customer to shut off gas valves; work to repair any equipment damage, purge the gas lines, and 
test for integrity; and a second visit to each individual customer to relight each appliance or manufacturing 
process and piece of machinery“ (Freeman, 2018). When natural gas service disruptions impact supply to 
gas power plants, they can also have negative impacts on electricity generation and electricity service. 
The frequency of these incidents is uncertain and data is generally not publicly available (Freeman, 2018).  

Disruptions in gas service can occur for a variety of reasons, both intentional and unplanned, 
including maintenance or system upgrades, supply constraints, equipment malfunction or error, and 
damage to facilities from natural disasters or other emergency condition (Argonne, 2002). Under certain 
types of service disruptions, the flow of gas to a constrained area might be reduced below a normal 
operating level, but not fully shut off. In this situation, service may be able to be sustained and pressure 
loss might be avoided if consumption peaks could be smoothed over a longer time period by a demand 
response program. 

Natural Gas Demand Response Programs to Date 
 
While DR programs have become common in the electricity sector, natural gas DR remains 

relatively underutilized. Only a few utilities have conducted gas DR programs to date. Beginning in 
2016/17, SoCalGas implemented a smart thermostat driven and behavior-based Gas DR program. In 
2017/18, National Grid began a DR program with 16 commercial and industrial (C&I) customers with large 
heaters or other natural gas-powered machinery. Con Edison began a thermostat-based gas DR pilot with 
up to 1,000 residential and commercial customers beginning in winter 2018/19.  

Thermostat driven DR programs typically deliver demand reductions over an event period of 2-5 
hours. Energy use normally increases in the hours before and after the event period due to pre-
conditioning and post-event rebound. Due in part to limitations of typical gas metering infrastructure, 
public evaluation reports on these programs usually report impacts at the daily level. A recent evaluation 
of the SoCalGas program is an exception (Bell, et.al., 2019). It includes hourly impact estimates which 
were produced using interval data from advanced gas meters.  

 
Midwest Utility Gas Demand Response Pilot 
 

During winter 2020/21, a large electric and natural gas distribution utility in the Midwest 
conducted a gas DR pilot program involving thermostat treatments for residential and small commercial 
customers. The program evaluation objectives included measuring consumption impacts, customer 
experience, and identifying factors that influence customer participation; this paper focuses on the 
findings of the consumption impact analysis. Consumption impact objectives included measurement of 
pre-heating impacts in the hours preceding events, reductions during event hours, and consumption 
snapback in the hours following events. These impacts were measured for different customer types and 
thermostat brands with unique event control algorithms.  

The program included an enrolled population of approximately 3,500 residential customers and 
400 small or medium business customers (SMB). Residential impacts were measured using a randomized 
control trial. The SMB customer segment impacts were measured using individual customer baseline 
models. For both residential and SMB customers, gas consumption was metered at the day interval. The 
limited temporal resolution raised challenges for measuring the impact of 4-hour DR events. To address 
this challenge, hourly consumption impacts were measured in heating system runtime minutes using 
thermostat telemetry data. We then translated DR estimates to hourly gas consumption impacts by 
estimating the effect of a heating system runtime minute on gas consumption in a second stage model.  

The study provides several new insights. It demonstrates the potential for gas demand response 
in a cold climate Midwest region, the efficacy of experimental and non-experimental methods for gas DR 
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impact measurement, and it provides a solution for measuring gas DR program impacts with limited 
advanced gas metering infrastructure. 

Impact Evaluation Methodology 

For both the residential and SMB program segments, we used a two-stage modeling process to 
estimate the impact of the thermostat demand response treatment during program events. In the first 
stage, we used thermostat telemetry data to estimate the program impact of the event treatments on 
customer heating minutes by hour. In the second stage, we estimated the conversion rate of heating 
minutes to natural gas consumption for customers by sector and thermostat brand. The thermostat 
telemetry data was provided by the original equipment manufacturers (OEMs) via the program 
implementer. The telemetry data included hourly resolution temperature setpoints and heating system 
runtime. Daily resolution gas meter data was provided by the utility.  

Despite the consistency in this general approach, there were several important differences in the 
program implementation and evaluation approaches for the residential and SMB customer segments. 
 
Residential Hourly Heating Minute Impact Methodology 
 

 The residential segment was conducted as a randomized control trial (RCT). Within each 
thermostat brand group, approximately 500 customers were assigned to a control group and the 
remaining customers were assigned to receive the event treatments. The treatment and control group 
assignments were re-randomized for each event. We estimated program impacts using a difference-in-
differences regression model that compared the treatment and control group heating minutes during 
event periods.  

The regression model included independent variables to account for hourly impacts of 
temperature (heating degree hours) by customer group, differences in baseline consumption between 
treatment and control groups on non-event days, and hour-by-date fixed effects. We clustered standard 
errors by customer account to control for within-customer correlation in natural gas consumption. 

We used the following model specification to determine event-specific demand reduction for 
residential participants: 

 
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖  = ∑ 𝛽𝛽𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡T

𝑡𝑡=0 + ∑ 𝜇𝜇𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘23
𝑘𝑘=0 ∗ 𝐼𝐼(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1)𝑖𝑖 + ∑ ∑ 𝜃𝜃𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
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𝐼𝐼(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1)𝑖𝑖 ∗ 𝐼𝐼(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1)𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ ∑ 𝛾𝛾𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖23
𝑘𝑘=0

2
𝑗𝑗=1 ∗ 𝐼𝐼(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1)𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

 

Where: 

HMit  = Thermostat heating minutes of customer i during date-hour t 
βt =  Datetime fixed effect or average effect of date-hour t on customer 

heating minutes. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡  = Indicator variable for date-hour (= 1 if date-hour t is the tth hour of the 

sample, t=0, 1, 2, …, T; = 0 otherwise) 
µk =  Average effect of treatment group membership in hour k on non-event 

days 
Hourkt  = Indicator variable for hour of the day (= 1 if date-hour t is the kth hour of 

the day, k=0, 1, 2, …, 23; = 0 otherwise) 
I(Treat=1)i =  Indicator variable for assignment to treatment group (= 0 otherwise) 
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𝜃𝜃𝑚𝑚𝑚𝑚 =  Average impact of the event on treatment customer heating minutes 
during hour k of demand response event m 

I(Event=1)mkt =  Indicator variable for program event hour (= 1 if date-hour t is the kth 
hour, k=1,2,…,J, of event m, m=1, 2, …, M) 

𝛾𝛾𝑗𝑗𝑗𝑗  =  Average effect of a heating degree hour on heating minutes for a 
customer in group j (1=treatment, 2=control) in hour k 

𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 =  Heating degree hour for customer i in date-hour t for a base temperature 
of 65°F 

𝜀𝜀𝑖𝑖𝑖𝑖 = The error term for customer i in date-hour t 
 

 
Small and Medium Business Hourly Heating Minute Impact Methodology 
 

In the SMB segment, the enrolled population was smaller (< 500 total) and we anticipated greater 
heterogeneity in customer heating patterns due to differences in business schedules. For these reasons, 
the SMB segment was not conducted as an RCT. Instead, all enrolled participants received the event 
treatments. To measure program impacts, we used regression methods with non-event day data to 
predict counterfactual baseline heating.  

We constructed a series of candidate predictive models using non-event day thermostat data. We 
evaluated the predictive accuracy of each model on a test set of non-event days when temperature 
conditions were similar to event days. The candidate models included a variety of temperature condition 
variables (such as temperature, heating degree hours, or heating degree hour buildup) and various 
datetime variables (such as day of week or hour of day). For each facility, we selected the candidate model 
that produced the most accurate prediction (minimum root mean squared error) for the final impact 
estimation. 

We used the selected models to predict counterfactual baseline heating minutes. Finally, we 
compared the counterfactual to actual heating minutes on event days to estimate program impacts in 
each hour. Table 1 lists the candidate models and the number of facilities for which each model was 
selected. 

 
Table 1. SMB Candidate Models 

Candidate 
Model 

Independent Variables Number of Facilities 

1 Hour 32 
2 Hour, Day of Week 10 
3 Hour, Week 13 
4 Hour, Day of Week, Week 14 
5 Hour, HDH25a 8 
6 Hour, HDH50b 9 
7 Hour, HDH25 Buildupc 8 
8 Hour, HDH50 Buildup 8 
9 Hour, HDH25, HDH50 Buildup 9 

10 Hour, HDH50, HDH25 Buildup 11 
11 Hour, Week, HDH25 5 
12 Hour, Week, HDH50 14 
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Candidate 
Model 

Independent Variables Number of Facilities 

13 Hour, Week, HDH25 Buildup 9 
14 Hour, Week, HDH50 Buildup 6 
15 Hour, Week, HDH25, HDH50 Buildup 9 
16 Hour, Week, HDH50, HDH25 Buildup 12 
17 Weekday, HDH25 5 
18 Weekday, HDH50 8 
19 Weekday, HDH25 Buildup 4 
20 Weekday, HDH50 Buildup 2 
21 Weekday, HDH25, HDH50 Buildup 6 
22 Weekday, HDH50, HDH25 Buildup 4 
23 Hour*Weekday, HDH25 6 
24 Hour*Weekday, HDH50 10 
25 Hour*Weekday, HDH25 Buildup 6 
26 Hour*Weekday, HDH50 Buildup 7 
27 Hour*Weekday, HDH25, HDH50 Buildup 8 
28 Hour*Weekday, HDH50, HDH25 Buildup 16 
29 Hour, Weekday, HDH25 9 
30 Hour, Weekday, HDH50 8 
31 Hour, Weekday, HDH25 Buildup 9 
32 Hour, Weekday, HDH50 Buildup 5 
33 Hour, Weekday, HDH25, HDH50 Buildup 3 
34 Hour, Weekday, HDH50, HDH25 Buildup 6 
35 Hour, Hour*HDH25 29 
36 Hour, Hour*HDH50 44 
37 Hour, Hour*HDH25 Buildup 18 
38 Hour, Hour*HDH50 Buildup 36 

Total 426 
a Heating degree hour for a base temperature of 25°F 
b Heating degree hour for a base temperature of 50°F 
c Cumulative function of heating degree hours over preceding 24 hours 

 
Heating Minutes to Gas Consumption Conversion Rate Estimation 
 

In a second stage model, we estimated the conversion rate between heating minutes and natural 
gas consumption. We merged metered natural gas consumption and thermostat telemetry data to 
produce a table with average hourly heating minutes for each metered natural gas consumption interval. 
Then, we used a regression model to estimate the average effect of a heating minute on natural gas 
consumption. For residential participants, we estimated a single conversion rate for each brand. The 
analysis was segmented by brand to control for any potential correlation in thermostat brand choice and 
heating equipment choice. However, the results were very similar across brands: one minute of heating 
caused an increase in gas consumption of approximately 0.95 cubic feet.  

For the SMB segment, we stratified participants into groups based on median daily natural gas 
consumption to account for differences in heating system capacities (i.e., MBH). We estimated a separate 
conversion rate for each group; these rates are displayed in Table 2. There was a strong positive 
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relationship between median hourly natural gas consumption and natural gas consumption per heating 
minute.  

 
 

Table 2. SMB Conversion Rates by Consumption Bin 

Median Daily Gas Consumption (cf) cf per Heating Minute 
Less than 25 0.91 

25 to 49 1.14 
50 to 99 1.68 

100 to 199 3.23 
200 to 299 4.60 

300 and greater 6.08 
 

Due to limitations of the thermostat telemetry data for brand C, we were unable to estimate a 
conversion rate for brand C participants directly. For residential brand C participants, we applied the 
average of the conversion rates estimated for participants with brands A and B, 0.97 and 0.93 cf per 
heating minute, respectively. For SMB brand C participants, we applied the conversion rates from the 
corresponding median consumption strata, of 1.52 cf per heating minute.  

Impact Evaluation Results 

During the 2020-2021 winter event season, the utility called 10 natural gas demand response 
events. The events occurred on non-holiday weekdays between January 1, 2021 and February 28, 2021, 
under cold temperature conditions (less than 23°F), corresponding with periods of high natural gas 
demand. Table 3 summarizes the program performance across all 2021 events.  

 
Table 3. Event Summary 

Date Event Time 
Event 

Participantsa 
Average 

Temperatureb 
Program Average Demand 

Reduction (Mcf/hour)c 
January 20 6 a.m. - 10 a.m. 3,853 17°F 30.8 
January 22 6 a.m. - 10 a.m. 3,831 23°F 38.0 
January 27 6 a.m. - 10 a.m. 3,943 16°F 42.4 
January 29 6 a.m. - 10 a.m. 3,965 10°F 42.7 
February 3 6 a.m. - 10 a.m. 3,976 16°F 38.2 
February 8 6 a.m. - 10 a.m. 3,982 8°F 42.3 
February 9 6 a.m. - 10 a.m. 3,943 10°F 40.4 
February 16 5 a.m. - 9 a.m. 4,067 11°F 46.6 
February 19 5 a.m. - 9 a.m. 4,046 18°F 44.7 
February 25 5 a.m. - 9 a.m. 4,005 20°F 42.5 
Average - 3,961 15°F 40.9 
a Residential and SMB customers whose thermostats were controlled during the event.  
b Weighted average of local temperature conditions recorded by each participant's smart thermostat. 
c Aggregate program demand reduction (residential and SMB) calculated as the average hourly demand reduction across the 
four hours of the event.  
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Peak Demand Reduction 
 
The first seven events conducted in January and February ran from 6 a.m. to 10 a.m. The final 

three program events conducted in February began at 5 a.m. and ran until 9 a.m. All program events 
lasted four hours. Figure 1 and Figure 2 depict the per event participant demand reduction for each 
thermostat brand for residential and SMB customers, respectively. 

 

 
Note: Error bars depict 90% confidence bounds. 

Figure 1. Average Per-Participant Demand Reduction by Thermostat Brand – Residential Sector 

 

 
Note: Error bars depict 90% confidence bounds. 

Figure 2. Average Per-Participant Demand Reduction by Thermostat Brand – SMB Sector 
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The program achieved statistically significant demand reduction among all thermostat brands in 
both sectors during each program event. Among residential participants, the average per-customer hourly 
load reduction ranged from 7.7 cf on January 20 to 11.4 cf on February 16. The maximum hourly per-
participant demand reduction of 20.8 cf occurred on February 16 between 5 a.m and 6 a.m. SMB 
customers’ average hourly per-participant impacts ranged between 9.9 cf on February 3 and 17.2 cf on 
February 9. The maximum hourly impact of 26.8 cf was achieved between 6 a.m and 7 a.m. during the 
February 9 event. Program-level average hourly impacts ranged from 30.8 Mcf to 46.6 Mcf. 

The average reduction in heating system runtime during event hours was approximately 50% for 
residential participants and 34% for SMB participants. By brand, the residential demand reductions were 
39.0%, 52.2%, and 51.8% for brands A, B, and C, respectively. The SMB demand reductions were 33.1% 
and 41.0% for brands B and C, respectively.  

Pre-Conditioning and Post-Event Rebound Demand Impacts 
 
In addition to demand reduction during the four hours of each program event, the thermostat 

treatment algorithm affected natural gas consumption in the hours preceding and following each event. 
Figure 3 depicts the average hourly heating demand for residential treatment and control customers on 
February 19, 2021. An increase in treatment group heating consumption due to thermostat 
pre-conditioning is visible beginning three hours preceding the event. Following the event, there is a 
visible rebound effect as the treatment group customers consume more natural gas than the control 
group customers. The increase in consumption following peak events can be attributed to increased 
heating as the participants’ homes return to a non-event thermostat setpoint. This effect is commonly 
known as rebound. Other demand response programs see similar effects following events.  Rebound 
impacts persisted for three hours following the event, but the majority of the rebound effect occurred in 
the first post-event hour.  

 

 
Figure 3. Residential Participant Heating Minute Impacts – February 19, 2021 

There were significant increases in demand before and after each event due to the pre-
conditioning component of the event treatment and to post-event rebound. Although pre-conditioning 
and rebound impacts varied slightly by thermostat brand, the largest demand impacts occurred during 
the three hours immediately preceding and following each event.  
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Pre-conditioning demand impacts for the three hours preceding an event averaged 6.1 cf per 
event per participant (24.0 Mcf aggregate per event impact) across all events. Average post-event 
rebound impacts were 5.5 cf per event per participant (21.7 Mcf aggregate per event impact). 

After accounting for event hour impacts, pre-conditioning impacts, and post-event rebound 
impacts, customers saved an average of 4.8 cf on event days. Increased pre- and post-event heating 
energy use offset 71% of the event’s energy use reduction. The program produced average aggregate 
energy savings of 19.0 Mcf per event. 

Conclusions 

Pilot programs can help determine the technical feasibility and performance potential for natural 
gas demand response. This evaluation found that, over a 4-hour event period, thermostat gas DR can 
reduce customer heating system runtime by 50% and 34% for residential and SMB customers, 
respectively. We also found that the limitations of evaluation with daily gas meter data can be overcome 
by measuring hourly program impacts with thermostat telemetry data. Measuring hour interval impacts 
is particularly important for thermostat programs with impacts that are focused in a few target hours. 
Additional research is needed to determine whether thermostat-driven gas demand response can address 
capacity constraints and provide resilience and reliability benefits cost-effectively.  
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