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ABSTRACT 

Southern California Gas Company (SCG) initiated the Central Water Heater Multifamily Building 
Solution program (CWHMBS) in early 2017. The program design targets natural gas master-metered 
multifamily buildings built prior to 1984 and complies with the California Public Utilities Commission 
(CPUC) normalized metered energy consumption (NMEC) site-level program rules. Target measures for 
each site include central domestic hot water boiler, circulation loops, controls, and low flow showerheads 
and aerators. The program pays both pre-measure incentives based on initial savings estimates, and post-
measurement incentives based on a 12-month measurement and verification period. The final verified 
site specific savings are determined using natural gas advanced metering infrastructure (AMI) hourly data 
reads.  

Savings results have been mostly positive with initial whole facility savings ranging between 
negative savings up to 40% of baseline period program site consumption. Among the project sites, 
numerous data challenges arose during data preparation including several unique gas AMI challenges. 
Data challenge examples include strings of missing values, zero-valued gas reads, and differing meter data 
resolution ranging between three decimals to simple integer hourly reads.  

For the analysis we walk through each highlighted data challenge and associated model goodness 
of fit metrics and energy savings impacts. Gas AMI data challenges negatively impacted model accuracy 
metrics which, for most sites, did not meet program defined thresholds while still passing overall savings 
uncertainty requirements.  

Results provide a case study for dealing with data deficiencies for a whole-building NMEC gas 
program. Presentation insights will aid whole building, and meter data-based program planners and 
program implementers understand how different natural gas meter data issues affect model and savings 
results.  

Introduction 

Southern California Gas Company (SCG) initiated the Central Water Heater Multifamily Building 
Solution program (CWHMBS) in early 2017. The program was made possible by the 2015 California 
Assembly Bill (AB) 8021 enabling high opportunity utility projects or programs (HOPPs) utility program 
submissions. Per SCG Advice Letter 4965-A2 (Disposition, 2016), the final approved program design targets 
gas master-metered multifamily buildings built no later than 1984 with efficient central domestic hot 
water upgrades. Final approved program site measures included; 

 
 

1 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160AB802  
2 “Disposition approving Advice Letter 4965-A (U 904 G), Southern California Gas Company High Opportunity Projects 
and Programs(HOPPs) – Central Water Heater Multifamily Building Solution (CWHMBS) Program”, August 2, 2016, 
p. 2. https://tariff.socalgas.com/regulatory/tariffs/tm2/pdf/4965-A.pdf  

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160AB802
https://tariff.socalgas.com/regulatory/tariffs/tm2/pdf/4965-A.pdf
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● Central storage water heater or boilers 
● Central water heater modulating temperature controllers 
● Hot water system usage monitoring 
● Low flow showerheads and faucet aerators 
● Circulating demand pumps with controllers 

 
The initial program rollout was limited to 20 enrolled SCG customer multifamily sites with installed 

hourly natural gas AMI. The piloted program design was a site-level normalized metered energy 
consumption (NMEC) design where all savings and associated incentives were to be estimated using actual 
measured hourly metered gas usage. Final savings were calculated by estimating changes between 
baseline pre-project and post-project periods. NMEC is a California Public Utilities Commission (CPUC) 
specific program category term. CPUC NMEC program guidelines are outlined in a program rulebook 
(California, 2020). CPUC regulated NMEC program designs are similar to pay for performance, strategic 
energy management, or other meter data based whole building efficiency designs. A specific NMEC 
program requirement is that programs produce weather normalized savings in additional to traditional 
“at the meter” or actual energy savings. Actual or meter based savings were calculated in addition to 
weather normalized savings.  Actual savings provided the basis for incentive payments.  

EcoMetric was contracted as an embedded M&V consultant to produce site specific claimable and 
weather normalized energy savings estimates. site-level energy savings and customer incentives were 
determined uniquely for each program site. Program participants authorized the release of a minimum 
12 months of hourly reads prior to and after project installation. The M&V process required site-     specific 
metered data quality control screens, weather merges and data feature creation, baseline and 
performance period model building.  

In this paper, we outline the program M&V methodology, discuss gas AMI data challenges and 
chosen resolutions, and summarized data quality impacted baseline modeling impacts.  

Methodology 

Advice Letter Proposed Methodology 

The initial program advice letter proposed using the Lawrence Berkley National Lab (LBNL) 
published Time of Week Temperature (TOW) model approach (Matthieu, 2011). The LBNL sponsored 
paper outlines a full methodology, but key method highlights include:      

 

● Ordinary Least Squares Regression (OLS) Current CPUC NMEC rulebook guidelines do not call for 
a certain model type or structure. Guidelines only spell out that model formats are stated. The 
program advice letter called specifically for OLS regression methods. 

● Primary data prediction features were temperature and time of week An indicator variable is 
created for each week hour creating 167 new dataset variables (168 hours in the week minus one 
variable to avoid collinearity issues). Temperature variables are added by creating linear spline 
variables that divide annual temperature ranges into buckets. The spline features incorporated 
into OLS regression approximate the curved hourly annual seasonal temperature.  

● Separate occupied and un-occupied time periods models Baseline or performance period data is 
divided into occupied or unoccupied hours. Unoccupied hours are then modeled separately using 
only hourly temperature. 
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● Normalized Metered Energy Consumption (NMEC) Fully normalized savings estimates requires 
building both baseline and performance period models. The baseline model is built using pre-
installation energy data while the performance prediction model is built to predict efficient energy 
post measure installation. The final baseline and performance period models are projected against 
normalized, long term weather conditions to create a weather normalized baseline and efficient 
performance period energy forecasts. The performance period model coefficients are also rerun 
using normalized weather conditions to create a weather normalized energy use forecast. Final 
weather normalized savings are the cumulative differences between the normalized baseline 
forecast and the normalized performance period energy use forecast.  

Final Approved Methodology 

The final approved program M&V approach differed slightly from the published TOWT approach. 
The targeted multi-family properties baseline datasets were not divisible into separate modeled occupied 
and unoccupied hours. Program participant buildings master metered gas data aggregated apartment 
level hourly natural gas usage. The aggregation masked discernable site specific occupancy trends. The 
published TOWT methodology introduces two primary data features for baseline and performance model 
building, temperature and time of week. The final M&V approach included additional non-     TOWT 
method defined model variables including heating degree hour and holiday indictors. Table 1 lists the final 
prediction model variable set. 

 Table 1. Final baseline and performance model prediction variables 

Variable # of Variables 

Temperature (linear splines) 6 

Time of Week 167 

Heating Degree Hour Moving Average (14 days) 1 

Holiday indicator 1 

Total # Variables 175 

 
Other prediction variables were considered but ultimately were not included. Hot water usage is 

typically less correlated with weather than electric usage so looking for additional prediction variables 
when building baseline models is useful. Two primary data collection activities were investigated; 1) water 
usage, and 2) occupancy. Water bills were requested for several early sites with the hope that at least 
monthly bills would help adjust models seasonally. The majority of the water bills were bi-monthly 
resulting in only 6 unique water consumption data points across a single year. Bi-monthly bills masked 
seasonal transitions by averaging consumption across wider periods. One site was located in an area with 
monthly water bills and results were promising because water usage was correlated with gas usage. 
Because it took multiple customer contacts and several weeks to obtain the water bills while only a small 
number of the 20 program sites ultimately would have monthly water bills. Mastered metered water data 
also included irrigation and community pool usage so ultimately the effort was abandoned. Occupancy 
data was investigated for several sites via third party data sites3 and also through participant data 
requests. Vacancy research revealed that a majority of sites during the program pilot had very constant 
vacancy rates with little month to month variability. Numerous sites participated in high consumer 
demand local and/or state rental assistance programs.  

The coefficient of variation of the root mean square error CV(RMSE) (Equation 1)(Granderson, 
2019) was the principle model variability goodness of fit metric. The CV(RMSE) describes how much 

 
3 E.g. Loopnet.com, costar.com, apartments.com, commercial real estate listings etc.  
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variation or randomness there is between the data and the model. CV(RMSE) is calculated by dividing the 
root-mean squared error (RMSE) by the period average hourly gas consumption. The program defined 
CV(RMSE) target threshold was less than 25% for each baseline and performance period model.  

 

 

Equation 1. Model variance goodness of fit metric 

Normalized bias error (NBE) (equation 2) (Granderson, 2019) detects if a model is more likely to 
miss above or below a prediction target value. NBE was the primary bias estimate with a program target 
range between -.5% and .5%.  

 

 

Equation 2. Model bias goodness of fit metric 

 
The final model coefficient of variation (R2) was also calculated for each site baseline and 

performance period model. The program target R2 threshold was greater than 70%.  

Final total savings uncertainty estimates were measured using the fractional savings uncertainty 
(FSU) metric (California, 2020) The FSU process is shown in Equations 3-5. FSU combines baseline and 
performance model uncertainty estimates which is then taken as a percent of total site-level      estimated 
savings. The final FSU calculation is adjusted for autocorrelation bias because consecutive hourly energy 
use data are not fully independent. Even with autocorrelation adjustments, savings uncertainty including 
the root mean square error most likely underestimate the true model and savings uncertainty. This is a 
known industry issues for hourly and sub-hourly meter-     based programs using RMSE based uncertainty 
approaches (Koran, et al.). 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑡 × 1.26 × 𝐶𝑉(𝑅𝑀𝑆𝐸) × √
𝑛
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Equation 3. Savings uncertainty 

Where: 
 t = student's t-statistic for a given confidence level (90% in this analysis) 
 CV(RMSE) = Coefficient of variation of the root mean square error 
 m = number of points in the full period (8,760 for this analysis) 

n = number of observations in model 
 n' = adjusted number of observations in the model, given by the equation: 

 

Equation 4. FSU autocorrelation adjustment 
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where 𝜌 = the autocorrelation coefficient (the square root of the R2 calculated for the correlation 
between the final model residuals and the residuals for the prior time period or previous hour) 

 
The total uncertainty for each site is simply the square root of combined baseline and reporting 

periods’ site-level uncertainty for that site (equation 5):  

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑇𝑜𝑡𝑎𝑙 = √𝑈𝑛𝑐𝑒𝑟𝑡𝑃𝑟𝑒
2 + 𝑈𝑛𝑐𝑒𝑟𝑡𝑃𝑜𝑠𝑡

2 

Equation 5. Total savings uncertainty  

Final Fractional Savings Uncertainty (FSU) equals the Uncertainty divided by the total final 
estimated savings.  

Data Quality Issues 

Pre-screening participant AMI data quality was not a program participation requirement so all 
identified data quality issues needed to be addressed or researched prior to final model building. Four 
common data quality issues were identified and investigated; 

• zero value reads,  

• poor temperature to gas usage correlation,  

• low variability in gas usage, and  

• reduce meter data resolutions (e.g. data only available in whole integers).  

SCG staff reviewed each problem site data extracts ensuring data issues were not query errors. 
After confirming that the data was exported correctly summary metrics were created to help summarize 
the various data quality modeling impacts.  

• Percent zero reads The metric assesses the percent of baseline or performance period hourly 
reads were zero valued meter reads. Days with all zero meter reads were ultimately removed 
before model building.  

• Temperature and natural gas usage correlation The Pearson correlation4 value was calculated 
between hourly gas meter values and actual temperatures. Several program sites showed little 
seasonality and weather relationship between hot water gas usage and temperature and 
temperature and gas usage correlation was generally low across all sites.  

• Gas meter read variability The ratio of unique hourly gas values divided by the total number of 
baseline or performance hourly reads. Values closer to zero indicate less unique gas meter read 
values or reduced variability. Low variability in your prediction variable may impact model 
performance. 

• Gas decimal places Gas AMI reads were delivered with three different levels of measurement 
resolution. No decimals, one decimal, and two decimal places. Gas data resolution varied 
according to the gas metering system installed at the site as well as how it was programmed. 

Figure 1 visualizes program site #8 periods of zero value reads. Nearly 30% of Site #8 baseline data 
were consecutive zero value reads. Consecutive zero value meter reads were removed prior to model 
building.  

 
4 https://en.wikipedia.org/wiki/Pearson_correlation_coefficient 
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Figure 1. Multiple zero read value example 

Figure 2 demonstrates poor hourly temperature and natural gas usage correlation. Gas usage still 
peaks seasonally in the figure, but the final hourly gas usage and temperature correlation was only -5.4% 
when the all site average was -26% (100 or -100% indicates perfect variable correlation). Hot water gas 
consumption usage and temperature were expected to be low in general across all program sites in part 
because of the regional mild climate.  
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Figure 2. Low gas consumption and temperature correlation 

Figure 3 displays low meter resolution output where the meter was programmed to only produce 
integer values. Hourly summer 2018 gas usage data oscillates between 0 and 1 depending on the hour of 
the day. The oscillation creates a block shape during summer 2018 hours and a very digital (squared shape 
over the whole year). No pre-model building data adjustments were made so the data was modeled as is.  
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Figure 3. Low resolution meter hourly consumption 

Model Results 

A majority of all program sites did not meet program defined model goodness of fit metrics while 
16 out of 20 sites still passed the overall model uncertainty (FSU) threshold. Three of the four non-
compliant FSU sites were negative savings projects. Overall project annual energy savings as a percent of 
baseline usage was 8.7% when including the 3 negative savings projects. Energy savings as a percent of 
baseline usage without negative savings projects increased to 22%.  

Table 4. # of program sites (n=20 total sites) not meeting model goodness of fit metrics and savings 
uncertainty thresholds 

 

# Sites 
Failing 
R2 (< 
70%) 

# Sites 
Failing 
CV(RMSE) 
(> 25%) 

# Sites 
Failing 
FSU (< 0 
or > 
50%) 

Avg.  Site 
Savings 
(% of 
Baseline 
usage) 

Baseline 16 15 
4 8.7% 

Performance 16 14 

 
Poor model goodness of fit metrics including low R2 and high CV(RMSE) values were not good 

indicators that projects would not pass final savings uncertainty (FSU) thresholds.   Model goodness of fit 
metrics and model savings uncertainty formulas contain independent components so 100 percent 
alignment is not expected.  Program defined model goodness of fit metrics should be expected to roughly 
align with savings uncertainty metrics.  This is an area where further research should be conducted either 
through simulations or analysis of other similar model based program designs. 
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Lack of non-weather related variables and low weather and gas usage correlation likely 
contributed to poor final baseline and performance model fits. Only four baseline period and performance 
period sites met or exceeded the recommended 70% R2 threshold. Low R2 values indicate the degree that 
your prediction model variables are unable to explain gas usage or there are likely other unknown non-
included model explanatory modeling variables. High percent zero meter reads, low temp-gas usage 
correlation, and low gas measurement variability were moderately correlated with higher (poor fit) 
CV(RMSE) values. Figure 4. (upper left) demonstrates ranked percent zero value reads (% data points 
removed) from high to low. Figure 4 (upper right) plots high to low temperature-gas correlation, and 
Figure 4 (bottom) shows increasing gas measurement variability all plotted with CV(RMSE) values on the 
right axis. Across each measure there is no consistent relationship data quality impact on model variability 
metrics and in some cases there are slight trends of model variability decreasing (increasing CV(RMSE)) as 
data quality metrics improve 

 

Figure 4. Baseline model percent zero meter reads (top left), temperature-gas use correlation (top right), and gas 
read variability (bottom) and CV(RMSE) values 

Alternative Modeling Approaches 

Two post project retrospective modeling approaches were testing with the four poorest model 
fit program sites.  The first method was to test an array of alternative model algorithms apart from OLS 
regression and the second was to attempt daily models instead of the program prescriptive hourly 
models.  Table 5 lists the tested algorithms which include high/low bias and high/low variance structures 
along with a variety of tunable model parameters (e.g. machine learning hyperparameters) to fine tune 
model final model fits.  Low bias algorithms tend to be less restrictive in their form.  Low variance model 
types tend to have less uncertainty with lower variability, but are often associated with higher bias.  
Several of the algorithms have been researched by LBNL (Touzani, 2019). Python based scikit-learn 
modules were used for all testing. Algorithm documentation can be viewed at;                                          
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https://scikit-learn.org/stable/supervised_learning.html. Alternative and flexible model type testing only 
moderately improved the four poorest performing program site baseline period CV(RMSE) values. 
Advanced alternative modeling could not overcome poor weather fit, missing data, and/or low meter 
read variability. 

Table 5. Tested alternative model algorithms 

Model Model type Bias Variance 
Learning 
Parameters 

Linear Regression (OLS) linear high low None 

Lasso Regression (Lasso) linear high low 1 

Ridge Regression (Ridge) linear high low 1 

Elastic Net (EN) non-linear low high 4 

Ada Boost (AB) non-linear low low 2 

Gradient Boosting (GBM) non-linear low low 4 

Random Forest (RF) non-linear low low 5 

Extra Trees Regression (ET) non-linear low high 5 

MLP Regressor (NN) non-linear high low 4 

 
Daily models significantly improved (lowered) baseline model CV(RMSE) values for the four tested 

sites. Energy savings estimates were consistent between hourly and baseline models excluding site #17 
where the model change was dramatic and the underlying data issues more severe (see Figure 3). Daily 
modeling options should be considered to address program data variability and/or quality concerns.   

Table 6. Daily vs. hourly baseline CV(RMSE) values for poor model fit sites 

Program Site 
# Hourly CV(RMSE) Model Type 

Daily 
Energy 
CV(RMSE) 

17 70% Gradient Boosting 24% 

14 43% Ridge Regression 15% 

15 40% Ridge Regression 23% 

20 40% Random Forest 11% 

Conclusions 

Data oriented gas energy efficiency programs will expand as AMI is rolled out across additional 
service territories allowing for expanded data driven program designs.  Even with substantial data quality 
issues such as high zero reads and low temperature-gas usage correlation in mild climates program rules 
and designs can help offset data quality issues. Program designs should allow and encourage exploration 
of available modeling variables apart from weather. Examples may include building level water usage for 
hot water end uses or production oriented variables for industrial gas programs.  Additional non-weather 
data collection requires time and potential interactions with program participants to collect data.   

Program identified gas AMI program data quality issues included high percent zero meter reads, 
low temp-gas usage correlation, and low gas measurement variability.  Each identified data quality issue 
was correlated with higher (poor model fit) CV(RMSE) values. Weather model variables alone for gas hot 
water usage modeling were not sufficient for most program sites to pass model goodness of fit metrics. 
Missing and unknown variables likely contributed to poor model goodness of fit metrics. Poor model 

https://scikit-learn.org/stable/supervised_learning.html
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goodness of fit metrics were not predictors of final savings uncertainty. Clear high savings estimates for 
most projects resulted in lower FSU values even when almost all program sites failed one or more model 
goodness of fit threshold.  The program model metrics and uncertainty thresholds were consistent with 
industry standards so this is an area where more investigation is needed either through simulation or 
analyzing other program results.   

Alternative tested model approaches apart from the prescribed program approach had mixed 
results.  Machine learning based model structures were not able to improve model goodness of fit metrics 
for tested poor fit sites and overcome underlying data quality issues.  Daily aggregated models seemed to 
smooth hour to hour data issues while improving baseline model goodness of metrics for tested program 
sites. Final daily model energy savings estimates were within 1% of hourly model savings for all but one 
tested site. Daily model flexibility should be considered as a backup option for programs where hourly 
results are not mandatory and especially where there is a chance for inconsistent data quality 
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