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ABSTRACT 

As the pace of electric vehicle (EV) adoption has quickened in recent years, more utilities have 
begun piloting EV managed charging pilot programs designed to shift EV charging to off-peak hours, 
minimize the addition of on-peak load, and measure EV drivers’ responsiveness to various price and 
behavioral signals. The authors evaluated one of these programs – National Grid’s SmartCharge Rhode 
Island program – to assess the effects of the piloted intervention on off-peak charging behavior and to 
develop insights that will be used to inform future managed charging programs.1 

The pilot was designed to capture aspects of both managed and unmanaged charging behavior, 
measure the dominant effects driving any observed off-peak shift, and facilitate a rigorous evaluation.  
Charging data was collected from approximately 385 participants using devices connected to participants’ 
vehicles. EV drivers were incentivized to charge off-peak with per-kWh off-peak charging rebates.  

Analysis indicates that the off-peak charging rebates resulted in a measurable shift off-peak, with 
participants who received off-peak charging rebates beginning 7% more of their charging sessions off-
peak across all vehicle types. The effect was even more pronounced for battery-electric vehicles (BEVs), 
with Tesla and non-Tesla BEVs initiating 11.5% and 12.7% more of their charging sessions off-peak than 
plug-in hybrid EVs (PHEVs) with access to the rebates. 

Introduction 

The International Energy Agency’s (IEA) Global EV Outlook 2021 projects that the number of 
electric vehicles (EVs) circulating globally will reach 140 million by 2030, compared with roughly 10 million 
today (IEA 2021). Recent EV adoption data also points to a rapid shift in customer awareness of and 
interest in EVs, with the US reaching a critical tipping point – “the start of mass EV adoption” – in the first 
half of 2022, in which 5% of new car sales were EVs (Randall 2022).  This growth will have substantial 
impacts on the electric grid (Van Triel and Lipman 2020), particularly as advancements in battery 
technology lead to increased range (Coltura 2021) and energy density (Markus 2021), requiring not only 
more energy to fully charge one’s battery but also faster charging rates to do so conveniently. To better 
understand the local grid impacts from EV charging and to inform the design of time of use (TOU) electric 
rates, utilities across the country are piloting managed charging programs designed to shift EV charging 
load off-peak. These programs typically leverage incentives of varying structure and magnitude, including 
per-kWh rebates that simulate TOU rates and peak avoidance reward structures, which reward EV drivers 
for conducting a percentage of their charging off-peak or never charging on-peak. Proven managed 
charging strategies will be critical to supporting the market growth of EVs, the electrification of public 
transit, and the seamless absorption of millions of EVs onto the grid, and the authors believe that all 
utilities will require tools for effectively managing EV charging load. 

Managed charging strategies can be classified as either active or passive managed charging. In 
active managed charging, a utility or market aggregator can control when an EV charges and how much 

 
1 Note that as of May 2022, National Grid Rhode Island is now Rhode Island Energy (a PPL company). 
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power it draws (or potentially sends back to the grid) using signals sent remotely to a vehicle or charger, 
after taking into account grid and driver-provided constraints. Active managed charging strategies can be 
used for demand response, peak load management, to absorb excess renewable generation, or to supply 
ancillary services to the grid. 

Passive managed charging, on the other hand, leverages a number of mechanisms, including 
monetary incentives and behavioral messaging, to influence EV drivers to delay their charging until off-
peak hours. Drivers may use tools, such as smart chargers with scheduling capabilities, in-vehicle systems, 
or other devices to achieve the desired off-peak charging shift, but they are ultimately responsible for 
internalizing the signals they receive and determining whether and how to act on them by altering their 
charging behavior. The program discussed in this paper is an example of a passive managed charging 
program. 

The utilities and program administrators that develop and launch managed charging programs 
conduct evaluations to increase their understanding of both “managed” (i.e., exposed to price or 
behavioral signals) and “unmanaged” (i.e., not exposed to price or behavioral signals) EV charging 
behavior, assess the effectiveness of the piloted interventions in shifting charging off-peak, identify other 
factors that impact charging behavior, and develop learnings to inform the design of future programs. The 
data collected through these programs and evaluations can also be incorporated into utilities’ rate design, 
system planning, and forecasting efforts. 

The following sections describe the managed charging program design, data analysis approach, 
and statistical analysis. We close with a summary of findings and conclusions. 

Pilot Design Overview 

Launched in 2019, National Grid’s SmartCharge Rhode Island (SCRI) Program aims to understand 
EV charging patterns and the effect of rebates in shifting EV charging from on-peak to off-peak hours. The 
program peak period is defined as the hours of 1 p.m. to 9 p.m. on all days, including holidays and 
weekends. Participants’ charging activity was measured by an in-vehicle monitoring device provided by 
Geotab (“C2 device”) that plugs into a vehicle’s onboard diagnostics (OBD) port and records data while 
the vehicle is plugged in and charging (but not when the vehicle is plugged in and not charging); data from 
the C2 device was uploaded wirelessly, requiring no intervention from the participant to share their 
charging data. The authors conducted a randomized controlled trial (RCT) to evaluate the program and 
determine the effects of rebates and other variables on participant charging behavior, with participants 
randomly assigned to either the control or treatment group.2 Though the program is ongoing at the time 
of this writing (September 2022), this paper covers only the evaluation of the program’s first full year, 
which spanned September 1, 2019, through August 31, 2020. 

 Program recruitment began in June 2019 and was targeted toward known or likely EV drivers – 
including battery-electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) – within National 
Grid’s Rhode Island territory. The initial marketing materials advertised the opportunity for participants 
to receive $50 for enrolling, agreeing to share their charging data, installing their C2 device, and 
completing their first charge; participants could also earn an additional $50 for each year they kept the 
device plugged in during the multi-year program. None of the participants were aware of the off-peak 
charging rebates during the recruitment phase. Approximately 385 participants enrolled in the program 
and were randomly assigned to either the control or treatment group on a rolling basis during the 
recruitment period. Upon program launch in September 2019, the control group received access to an 

 
2 An RCT is a highly structured and rigorous experimental approach used to test the effect of a treatment 
on a group of participants, minimizing bias by randomly allocating participants across treatment and 
control groups. 
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online dashboard showing their charging behavior, while the treatment group received access to the same 
dashboard as well as rebates for off-peak charging. Rebates are 6 cents per kWh charged off-peak in the 
summer months (June through September) and 4 cents per kWh charged off-peak during the non-summer 
months. All charging was eligible for off-peak charging rebates, including charging that occurred outside 
of National Grid Rhode Island territory and both home and away-from-home charging. 

 

Randomized Group Assignment 

As discussed above, participants were randomly assigned to either the control or treatment group 
prior to the program launch in September 2019. Group assignments took place on a rolling basis as 
participants completed the necessary steps to enroll in the program. The program leveraged a stratified 
approach, described below. 

The primary group assignment characteristic was the vehicle type, determined based on the 
vehicle model. Vehicles were classified as being either PHEVs, non-Tesla BEVs, or Tesla BEVs. These vehicle 
strata were selected primarily to control for relevant technology differences between each vehicle type. 
Tesla BEVs were defined as any Tesla vehicle – Model S, Model 3, or Model X3 – while non-Tesla BEVs were 
defined as any non-Tesla all-electric vehicle. This distinction was made to capture the fact that, at the time 
of program launch, Tesla had the highest market share among EV manufacturers and its vehicles had 
access to its proprietary Supercharger network of DC fast chargers, sometimes at subsidized or zero cost. 
PHEVs have both an electric battery and an internal combustion engine; they have limited electric range, 
typically between 10 and 50 miles. In the future, the authors may consider stratifying based on 
manufacturer-agnostic factors such as battery size (kWh) or electric range (miles); however, the fact that 
the battery size and electric range were not readily available in the tracking data and could not always be 
accurately determined due to different vehicle trim options guided the decision to use a manufacturer-
based approach for SCRI. 

The random group assignment process also controlled for two additional variables: the length of 
time the participant had been driving an EV and whether the participant lived in a multi-EV household. 
The authors hypothesized that participants who had had an EV for longer were more likely to have settled 
into charging habits that could be more difficult to shift. They also hypothesized that the charging behavior 
of participants in multi-EV households could be affected by the other EVs charging at that location. 
Whenever multiple EVs from the same household enrolled in the program, they were placed in the same 
group to avoid introducing bias. 

Data Cleaning and Analysis 

This section contains an overview of the data used in the evaluation. 

Charging Data Overview 

This section outlines the structure of the data and the available data fields, as measured using the 
C2 device and provided to National Grid by Geotab. Each record in the data represents a charging interval, 
defined as an up-to-15-minute-long period, ending and/or starting on the quarter hour, with associated 
charging data recorded during the interval. A charging session is comprised of one or more charging 
intervals and represents a discrete charging “event,” defined as the moment power began to flow to the 
vehicle to the moment it stopped flowing. Charging intervals and charging sessions have unique 

 
3 The Model Y was not compatible with the C2 device at the time of this study. 
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alphanumeric identifiers to facilitate aggregation and segmentation; individual vehicles also have unique 
numeric IDs. 

For each charging interval, the data included the following fields: 
 

• Vehicle key 
• Interval ID 
• Session ID 
• Start and end time 
• Session location (provided as “In National Grid territory,” “Out of territory,” or “No 

GPS/Inaccurate GPS”) 
• Maximum charge rate (kW) 
• Total charged energy (kWh) 
• Starting and ending state of charge (SOC, %)  
• Vehicle make, model, model year, and trim (decoded from the vehicle identification  

number [VIN]) 
 

As described above, the C2 device only captures data when the vehicle is actively charging; thus, 
if a vehicle is plugged in but programmed to delay charging until a certain time, the device does not begin  
recording data until the vehicle starts to receive power. 

Data Cleaning 

The authors implemented quality control (QC) checks to ensure that blank, invalid, and inaccurate 
data was flagged for removal from the analysis. Examples of data the team omitted from the analysis 
include negative kWh or kW data, charge rates that exceeded a given EV model’s maximum charge 
acceptance rate (kW), and “false start” sessions that were either shorter than two minutes in duration or 
resulted in less than 0.15 kWh of charging across a charging session. Following the application of QC flags, 
the authors filtered the data to remove all charging intervals that failed QC. Approximately 90% of 
charging intervals passed QC. 

Data Analysis 

The authors conducted initial data analysis in Python, including the QC described above, to 
quantify high-level program statistics and develop charging load profiles with 15-minute resolution. This 
analysis focused on understanding charging behavior at an aggregate level, before focusing on on-peak 
vs. off-peak considerations, as well as the development of visualizations of aggregate charging behavior. 
Only data that passed QC was included in this analysis, which included the following steps: 

 
1. Calculating vehicle-level and program-level statistics, including total kWh charged and number of 

charging sessions by month, group, and vehicle type. 
2. Constructing per-vehicle average charging load profiles with 15-minute resolution and 

aggregating them by vehicle type and group (treatment vs. control); we further segmented load 
profiles by month and day type (weekday vs. weekend). 
 
To assess the program’s effectiveness, we also calculated two metrics related to participants’ off-

peak charging behavior: 
 

1. The percentage of kWh charged off-peak by month for each vehicle (charging load approach) 
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2. The percentage of charging sessions initiated off-peak by month for each vehicle (session start 
time approach) 
 
These metrics were calculated as percentages to automatically control for differences in driving 

behavior, travel and commuting patterns, and vehicle type across participants. Focusing on the proportion 
of charging occurring off-peak, rather than the total kWh charged off-peak, puts both long- and short-
range EVs and participants with long and short commutes on the same basis. 

There is a good reason for focusing on these two metrics. The charging load approach directly 
reflects the program design of rewarding drivers for shifting charging off-peak, where more off-peak 
charging equates to more rebates earned. However, the timing of when a vehicle consumes kWh is a 
function of several factors, including the plug-in time, the vehicle’s state of charge at plug-in, the battery 
size, and the speed of the charger. For example, it would be possible for someone to repeatedly plug in 
at 8 p.m. (on-peak) and spend four hours charging at a fixed rate; while 75% of their kWh would be charged 
off-peak in this scenario, they still contributed to higher on-peak load from 8–9 p.m. and may not have 
internalized the goal of the program. The session start time approach, on the other hand, captures the 
extent to which a participant has internalized the intent of the managed charging program by either 
delaying their charging manually or by setting a charging schedule in-vehicle or through a smart charger. 
Note that the session start time approach is not as robust when it comes to charging sessions initiated 
prior to the peak period (off-peak) that then extend into the on-peak hours. However, since most charging 
sessions are initiated later in the day, this approach has worked well in our evaluations to date. 

Statistical Regression Methodology 

To assess the effectiveness of the off-peak charging rebates, the authors developed two linear 
regression model to test the effect of several independent variables on two separate dependent variables 
representing off-peak charging performance: 1) the per-vehicle monthly percentage of kWh charged off-
peak (charging load approach), and 2) the per-vehicle monthly percentage of charging sessions initiated 
off-peak (session start time approach). Both metrics provide valuable insight into how EV drivers charge 
their vehicles, as described in the previous section.  

The regression models took the form shown below: 
 

𝑦 =  𝛽0 +  𝛽1𝑇 +  𝛽2𝑆 + 𝛽3𝐿 +  𝛽4(𝑆 × 𝑇) +  𝛽5(𝐿 × 𝑇) +  𝛽6(𝑂𝑐𝑡) + 𝛽7(𝑁𝑜𝑣) + 𝛽8(𝐷𝑒𝑐)
+  𝛽9(𝐽𝑎𝑛) +  𝛽10(𝐹𝑒𝑏) +  𝛽11(𝑀𝑎𝑟) + 𝛽12(𝐴𝑝𝑟) + 𝛽13(𝑀𝑎𝑦) + 𝛽14(𝐽𝑢𝑛)
+  𝛽15(𝐽𝑢𝑙) + 𝛽16(𝐴𝑢𝑔) +  𝛽17𝐾 

 
The coefficients above (𝛽′𝑠) represent the incremental increase in off-peak charging that results 

from turning on the respective variables; 𝛽0 represents the “base case” of control group PHEVs charging 
in September 2019. Variable definitions are provided in Table 1, below. 
 
Table 1. Summary of independent variables used in regression 

Independent 
Variable 

Symbol(s) Variable Type Potential Values Variable Properties 

Off-peak 
charging price 
signal 

T Dummy, main 
effect 

Control: T = 0 
Treatment: T = 1 

Tests the effect of the off-peak 
price signal on off-peak charging 
performance 

Vehicle type S, L Dummy, main 
effect 

PHEV: S = 0, L = 0 
Non-Tesla BEV: S = 1, L = 0 
Tesla BEV: S = 0, L = 1 

Tests the effect of vehicle type on 
off-peak charging performance 
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Price signal: 
vehicle type 
interaction 

S x T, 
L x T 

Dummy, 
interactive 
effect 

Multiplication of (S x T) 
and (L x T) 

Measures the incremental off-peak 
performance of a treatment group 
non-PHEV vs. a control group 
vehicle 

Program 
activity 

K Continuous, 
main effect 

Represents hundreds of 
kWh charged per month 
or tens of charging 
sessions per month 
(model-dependent) 

Tests the effect of a participant’s 
level of charging activity on off-
peak charging performance, with 
the intent of measuring whether 
more charging activity (sessions or 
kWh per month) translates into 
greater program engagement or an 
improved understanding of the off-
peak price signal 

Month Oct, Nov, 
Dec, Jan, 
Feb, Mar, 
Apr, May, 
Jun, Jul, 
Aug 

Dummy, main 
effect 

For each month variable, 
the variable is equal to 1 if 
the data was recorded in 
that month and 0 if not; 
September 2019 is the 
base case and is not 
assigned a variable 

Tests for non-linear effects of time 
on the observed behavior – 
specifically, is there a statistically 
significant behavior change in 
response to a higher rebate 
(summer months) or the COVID-19 
pandemic? 

 

Results and Findings 

This section presents a selection of results and findings stemming from the authors’ evaluation. 

Aggregate Charging Behavior Analysis 

Table 2, below, summarizes the overall program charging activity recorded between September 
1, 2019, and August 31, 2020. For this analysis we focused solely on aggregate charging behavior – not yet 
focusing on on-peak vs. off-peak considerations – to assess the similarity of the two groups’ behavior and 
to allay concerns that the groups were fundamentally unbalanced, which could hinder drawing 
conclusions about the effectiveness of the off-peak rebates later in the analysis. The two groups were 
expected to behave similarly on a per-vehicle aggregate charging behavior basis, given the random group 
allocation process.  
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Table 2. SCRI Program Summary Statistics 

Group 
Vehicle 
Stratum 

Vehicle Count* kWh Charged** Charge Sessions‡ 

Total 
Percent of 
Group 

Overall 
Per 
Vehicle  

Overall 
Per 
Vehicle 

Control 

PHEV 79 44% 107,842 1,365 27,498 348 

Non-
Tesla 
BEV 

56 31% 113,592 2,028 11,490 205 

Tesla 
BEV 

43 24% 163,426 3,801 19,567 455 

Total 
Control 

All 178 100% 384,860 2,162 58,555 329 

Treatment 

PHEV 67 38% 84,148 1,256 21,043 314 

Non-
Tesla 
BEV 

62 35% 116,338 1,876 14,088 227 

Tesla 
BEV 

47 27% 187,681 3,993 15,256 325 

Total 
Treatment 

All 176 100% 388,168 2,205 50,387 286 

Overall Total 354  773,027 2,184 108,942 308 
* The authors ran a Chi Square Test to test the equivalency of the control and treatment groups. With a p-value of 0.670, the test 

indicates there is no statistically significant difference in the groups’ composition. 
** The authors ran an independent samples t-test to assess the statistical significance of differences in the amount of kWh charged 

per vehicle. Across all vehicle types, the differences observed between the control and treatment group were not found to be 
statistically significant (90% confidence level), which indicates that the drivers in each group behave similarly in terms of the 
overall volume of charging they do (though the timing of that charging differs significantly between the two groups). 

‡ The authors ran an independent samples t-test to assess the statistical significance of differences in the number of charge 
sessions per vehicle per month. Across all vehicle types, the differences observed between the control and treatment group were 
not found to be statistically significant (90% confidence level), which indicates that the drivers in each group behave similarly in 
terms of how often they plug in (though the timing of those charging sessions differs significantly between the two groups). 

Several observations can be drawn by examining the high-level program charging data. 
 

• Charging volume and frequency reflect differences in vehicle strata composition. 
o Across vehicle types, PHEVs recorded the most charging sessions and charged the least 

kWh across both groups, suggesting that these vehicles need to charge more frequently 
as a result of their small battery size (kWh). 

o Tesla BEV drivers charged the most kWh of any vehicle type across both groups, a result 
of their larger battery sizes, which can be used to drive longer distances and thus require 
more charging. 

o In both groups, non-Tesla BEVs fell between the other two types in terms of kWh charged, 
reflecting the broad range of vehicles, battery sizes, and technologies included in this 
group. 

• The overall amount of charging (kWh) was statistically equivalent between the control and 
treatment groups when normalized by the count of vehicles in each group; the control group 
charged 2,162 kWh/vehicle and the treatment group charged 2,205 kWh/vehicle (a delta of less 
than 2%). 

o This observation is consistent with the program goal of shifting when charging occurs, 
rather than the amount of charging taking place. 
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Statistical Regression Analysis Results 

Following this initial high-level analysis, the authors developed two linear regression models to test the 

effect of several independent variables on two separate dependent variables representing off-peak 

charging performance: 1) the per-vehicle monthly percentage of kWh charged off-peak (charging load 

approach), and 2) the per-vehicle monthly percentage of charging sessions initiated off-peak (session 

start time approach). As discussed earlier, both metrics provide valuable insight into how Rhode Island 

EV drivers charge their vehicles, with the charging load approach being grounded in the program’s off-

peak rebate structure and the session start time approach better capturing the extent to which 

participants internalized the intent of the price signal. We focus on the session start time model in this 

paper for brevity and because we consider it the better estimate of the program’s impact. The 

regression model was structured using the following form: 

𝑦 =  𝛽0 +  𝛽1𝑇 +  𝛽2𝑆 + 𝛽3𝐿 +  𝛽4(𝑆 × 𝑇) +  𝛽5(𝐿 × 𝑇) +  𝛽6(𝑂𝑐𝑡) + 𝛽7(𝑁𝑜𝑣) + 𝛽8(𝐷𝑒𝑐)

+  𝛽9(𝐽𝑎𝑛) +  𝛽10(𝐹𝑒𝑏) +  𝛽11(𝑀𝑎𝑟) + 𝛽12(𝐴𝑝𝑟) + 𝛽13(𝑀𝑎𝑦) + 𝛽14(𝐽𝑢𝑛)

+  𝛽15(𝐽𝑢𝑙) + 𝛽16(𝐴𝑢𝑔) +  𝛽17𝐾 

Table 3 summarizes the resulting parameter values. All of the unstandardized coefficients (except for 
the base case) represent the incremental per-vehicle percentage of off-peak charging introduced by 
turning on the respective variable – e.g., the model estimates that 41% (𝛽0 in Table 3) of control group 
PHEV charging sessions started off-peak and that control group Tesla BEVs start an additional 8.8% of 
charging sessions off-peak (𝛽3 in Table 3). The parameters are additive; as such, the model indicates that 
68.3% of treatment group Tesla BEV charging sessions were initiated off-peak (𝛽0 +  𝛽1 + 𝛽3 +  𝛽5 =
41.0% + 7.0% +  8.8% + 11.5% = 68.3%). 

Table 3. Overall Rebate Intervention Session Start Time Model 

Coefficient 
symbol 

Variable 
Unstandardized 
coefficient 

Standard 
error 

P-value (statistical 
significance) 

𝛽0 
Base case: control 
group PHEVs 

41.0% 1.9% 0.000 

𝛽1 Treatment 7.0% 1.3% 0.000 

𝛽2 Non-Tesla BEV -3.4% 1.4% 0.019 

𝛽3 Tesla BEV 8.8% 1.5% 0.000 

𝛽4 
Non-Tesla BEV-
treatment 

12.7% 2.0% 0.000 

𝛽5 Tesla BEV-treatment 11.5% 2.1% 0.000 

𝛽6 October 2019 1.7% 2.4% 0.459 
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𝛽7 November 2019 5.2% 2.3% 0.021 

𝛽8 December 2019 6.8% 2.3% 0.003 

𝛽9 January 2020 4.8% 2.2% 0.032 

𝛽10 February 2020 5.4% 2.2% 0.015 

𝛽11 March 2020 7.5% 2.2% 0.001 

𝛽12 April 2020 8.5% 2.3% 0.000 

𝛽13 May 2020 2.3% 2.3% 0.311 

𝛽14 June 2020 0.5% 2.3% 0.813 

𝛽15 July 2020 -0.4% 2.3% 0.852 

𝛽16 August 2020 1.2% 2.3% 0.603 

𝛽17 
Tens of charging 
sessions per month 

0.7% 0.1% 0.000 

This model leads us to several findings regarding the off-peak session start time performance: 

• Participants belonging to the treatment group initiated 7% more of their charging sessions off-
peak, indicating that the off-peak price signal had the desired effect (statistically significant). 

• The impact of the off-peak price signal was not uniform across all vehicles. 
o Non-Tesla BEV and Tesla BEV drivers in the treatment group charged 12.7% and 11.5% 

more off-peak than PHEV drivers in the treatment group, respectively (both statistically 
significant). 

o The authors believe that greater access to tools that support scheduled charging 
accounted for some of these vehicle type differences among treatment group members. 
This was supported by a participant survey that showed that 76% of Tesla and non-Tesla 
BEV drivers were aware of tools for controlling their EV charging vs. 56% of PHEV drivers.  

• Vehicle type had a statistically significant effect on the observed off-peak charging behavior 
absent an off-peak price signal; however, the direction of the impact was not uniform. 

o Tesla BEV drivers started 8.8% more of their charging sessions off-peak than PHEVs even 
without an off-peak price signal, suggesting they may have a technology edge over PHEVs 
or potentially receive outside marketing regarding off-peak charging. 

o Control group non-Tesla BEV drivers initiated 3.4% fewer of their charging sessions off-
peak than control group PHEVs. 

o Notably, non-Tesla BEV drivers charged significantly more kWh off-peak but initiated 
fewer charging sessions off-peak, supporting the dual focus on charging load and session 
start time to more fully assess the off-peak rebate’s effectiveness. 
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• Time had a statistically significant impact on the off-peak session start performance for November 
and December (in 2019) and January, February, March, and April (in 2020). We believe there are 
several factors that drove this observed behavior, described below. 

o On average from November to February, 5.5% more charging sessions were initiated off-
peak across all vehicles than in September 2019. We initially expected to observe the 
opposite, as we anticipated that greater in-car heater use in the winter months would 
increase charging overall and could push session start times earlier. The observed winter 
off-peak shift may be the result of changes to typical schedules, perhaps related to colder 
temperatures, shorter days, or the holidays. 

o In March and April, the two months in which Rhode Island was most deeply impacted by 
COVID-19, charging sessions were initiated off-peak 7.5% and 8.5% more frequently than 
in September 2019, respectively, across all vehicles. This shift was likely driven by a 
significant decrease in charging outside the home, such as at workplaces and retail 
locations, which is more likely to occur on-peak. The absence of this charging would skew 
the percentage of off-peak at-home charging proportionally higher. However, without 
more granular geographical data, it was not possible to verify this. 

o Notably, COVID-19 did not have a dampening effect on off-peak charging performance. 
As charging overall decreased significantly, it appears that on-peak charging dropped off 
more than off-peak. 

It is worth noting that the charging load approach model revealed many of the same findings as 

described above. The off-peak shift observed under that model was also significant, reinforcing the fact 

that the rebates are effective, and also exhibited a strong dependence on vehicle type, further 

reinforcing the takeaway that participants’ ability to effectively respond to an off-peak price signal 

depends in part on their awareness of and access to technology that facilitates scheduling charging. 

Key Findings and Takeaways 

The following key findings were developed through this evaluation: 

• Off-peak rebates are effective in shifting EV charging.  
• The effect of an off-peak price signal is not uniform for all vehicle types, with Tesla and non-Tesla 

BEVs exhibiting a greater off-peak shift than PHEVs across both regression models. 
• Additional factors had an effect on when participants initiated their charging sessions, including 

seasonality effects, weather/temperature, and the COVID-19 pandemic. More research is 
required to develop a more nuanced understanding of the effect each of these factors had on off-
peak charging in the SCRI Program. 

 
It is encouraging to see the interventions piloted through this managed charging program having a 
measurable effect on real-world charging behavior. Looking forward, there is much more work to be done 
on both the program implementation and evaluation side, including designing and piloting new managed 
charging strategies to help utilities meet their changing needs, especially in a future with high EV adoption. 
Since the completion of this study, the authors have continued to work with National Grid Rhode Island 
to explore alternative incentive structures and the testing of behavioral “nudges” to shift load off-peak 
more effectively. As more utilities begin piloting managed charging programs in the near future, we expect 
to see a growing number of novel managed charging approaches designed to: 

• Shift load to different times of the day (perhaps to soak up excess mid-day solar generation) 
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• Increase demand response event participation 

• Intelligently schedule charging to smooth out spiky load profiles 

• Export power back to the grid under certain conditions 
 
As these programs evolve over time, it may be necessary to explore targeted updates to the evaluation 
framework described in this paper in order to accurately capture the impacts of those programs. On the 
evaluation side, there is more work to be done to develop robust statistical analysis approaches that 
effectively capture the variability of individual charging behavior and model the factors shaping charging 
behavior, including price and information signals, behavioral messaging, vehicle type, weather, and time.  
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